[发明专利]基于多维数据模型的传感器数据流异常检测方法有效
| 申请号: | 201510305314.7 | 申请日: | 2015-06-04 |
| 公开(公告)号: | CN104994535B | 公开(公告)日: | 2019-08-06 |
| 发明(设计)人: | 李光辉;费欢;冯海林 | 申请(专利权)人: | 浙江农林大学 |
| 主分类号: | H04W24/04 | 分类号: | H04W24/04;H04W24/06 |
| 代理公司: | 南京先科专利代理事务所(普通合伙) 32285 | 代理人: | 缪友菊 |
| 地址: | 311300 浙江省*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 多维 数据模型 传感器 数据流 异常 检测 方法 | ||
本发明公开了一种基于多维数据模型的传感器数据流异常检测方法,包括以下步骤:首先构造多维数据模型,然后采用异常数据的检测方法判断传感器节点是否为异常节点,如果是则采用异常数据的验证方法对判定的异常节点进行确认该异常节点的异常来源,所述异常来源包括异常节点所在区域发生特定事件和节点本身存在故障;本发明的方法针对传感器节点采集的多维属性数据提出了异常数据检测方法,充分考虑了传感器数据流之间的时空相关性和多维属性数据之间的关联性,具有可扩展性;与传统的检测方法比较,本发明提出的方法具有较高的检测率和较低的误报率。
技术领域
本发明属于传感器数据流异常值检测技术领域,具体是涉及一种基于多维数据模型的传感器数据流异常检测方法。
背景技术
作为一种无线自组织网络,无线传感器网络具有低能耗,节点分布灵活,较少甚至无需人工维护,可以在恶劣环境中长时间自治地工作等特点,但是由于无线传感器节点资源有限,又容易受到外界因素的干扰和破坏,或者外部环境突发事件的影响,节点采集到的数据很有可能与正常情况下的环境特征产生明显偏差,这类数据称为异常数据,采样数据中出现异常数据的节点被称为异常节点。
传感器节点产生异常数据的原因通常有以下三类:(1)传感器节点所处的区域发生了特定的事件(例如发生森林火灾时传感器的温度读数会明显升高);(2)传感器由于软硬件故障或者能量耗尽导致节点无法正常工作;(3)由于其他因素的影响使节点采集到的数据发生了偏差(例如处于阴影区域的传感器节点的光照强度数值会明显低于直接暴露在阳光下的节点读数),我们称这种偏差为测量误差。其中源于特定事件的异常数据反映外部环境确实发生了的显著变化,需要及时预警并采取紧急处理措施,源于传感器节点故障或能量耗尽而产生的异常数据反映出传感器网络健康状况存在问题,需要进行维护,存在测量误差的数据由于无法代表实际的环境特征,会对我们准确掌握外部环境的变化规律产生干扰,因此对无线传感器网络中的异常数据进行检测具有非常重要的意义。
传统的异常值检测方法通常只针对某一种数据,很少专门针对传感器节点的多维数据给出特定的解决方案,但是特定事件发生时的环境特征不会是单一、孤立的,以用于环境监测的无线传感器网络节点为例,发生火灾时除了温度上升之外还会伴随着湿度下降光照强度增加,而发生降雨时不仅湿度会增加,温度和光照强度也会同时降低,此时传统的检测方法就难以满足要求,节点处理多种读数则需要重复多次运行已有的算法,这无疑会显著增加传感器节点的负担;另外,针对一维数据的算法也没有考虑不同类型的数据对算法性能的影响,例如采集到的温度数据无论是波动的幅度、频率,还是均值、中值、方差等统计特征都会和同一采样时间段内的其他数据有明显的差异,如果不考虑不同类型数据之间的差异性,采用无差别对待的算法无疑会影响算法的性能;
因此,需要提出一种新型的传感器数据流异常检测方法。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种基于多维数据模型的传感器数据流异常检测方法,有效地提高了异常数据检测的准确率。
技术方案:为实现上述目的,本发明的基于多维数据模型的传感器数据流异常检测方法,包括以下步骤:
S1构造多维数据模型,传感器节点采集的多维数据模型表示为:
其中,j表示数据维数,rj(ti)表示传感器节点在采样时刻ti采集的数据;
S2采用异常数据的检测方法判断传感器节点是否为异常节点,如果是,则进入S3;
S3采用异常数据的验证方法对S2中判定的异常节点进行确认该异常节点的异常来源,所述异常来源包括异常节点所在区域发生特定事件和节点本身存在故障。
进一步地,S2中所述异常数据的检测方法包括以下步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江农林大学,未经浙江农林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510305314.7/2.html,转载请声明来源钻瓜专利网。





