[发明专利]一种多时相遥感影像的厚云自动去除方法有效
| 申请号: | 201510274174.1 | 申请日: | 2015-05-26 |
| 公开(公告)号: | CN104881850B | 公开(公告)日: | 2017-12-22 |
| 发明(设计)人: | 聂龙保;黄微;张婷婷;孟新知;叶分晓 | 申请(专利权)人: | 上海大学 |
| 主分类号: | G06T5/00 | 分类号: | G06T5/00 |
| 代理公司: | 上海上大专利事务所(普通合伙)31205 | 代理人: | 陆聪明 |
| 地址: | 200444*** | 国省代码: | 上海;31 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 多时 遥感 影像 自动 去除 方法 | ||
1.一种多时相遥感影像的厚云自动去除方法,其特征在于:由以下步骤组成:
步骤1:采集遥感卫星厚云影像Iraw(i,j,k),1≤k≤K和T幅与其同区域的多时相影像Iraw,t(i,j,k),1≤i≤M,1≤j≤N,1≤t≤T,1≤k≤K,其中i和j分别为图像中像素的行坐标和列坐标,k为图像的波段编号,M、N和K分别代表厚云影像的行数、列数和波段数;
步骤2:厚云区域检测,得到厚云区域指示模板mask(i,j);
步骤3:自动选择参考影像:自动选择一幅多时相影像作为参考影像Iref(i,j,k),具体步骤为:
步骤3-1:计算厚云影像的各波段的图像Iraw(i,j,k),1≤k≤K在x方向的梯度值gx,0(x,y,k)和y方向的梯度值gy,0(x,y,k):
步骤3-2:计算各所述多时相影像Iraw,t(i,j,k),1≤t≤T在x方向的梯度值gx,t(x,y,k)和y方向的梯度值gy,t(x,y,k):
步骤3-3:计算各所述厚云影像Iraw(i,j,k),1≤k≤K与各多时相影像Iraw,t(i,j,k),1≤t≤T在无云区域对应位置梯度值之间的均方根误差RMSEt:
步骤3-4:选择RMSEt最小的多时相影像Iram,t(i,j,k),作为所述厚云影像Iraw(i,j,k)的去云参考影像Iref(i,j,k);
步骤4:采用泊松方程修复方法去除厚云,得到初步去云结果I0(i,j,k);
步骤5:将所述初步去云结果I0(i,j,k)和参考影像Iref(i,j,k)纳入变分模型,再次去除厚云,得到最终的去云结果I'0(i,j,k)。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海大学,未经上海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510274174.1/1.html,转载请声明来源钻瓜专利网。





