[发明专利]冷却塔塔筒强度预测控制系统及其方法在审
申请号: | 201510110330.0 | 申请日: | 2015-03-13 |
公开(公告)号: | CN104697585A | 公开(公告)日: | 2015-06-10 |
发明(设计)人: | 张育仁;张研;帕提曼热扎克 | 申请(专利权)人: | 芜湖凯博实业股份有限公司 |
主分类号: | G01D21/02 | 分类号: | G01D21/02;G06N3/02 |
代理公司: | 无 | 代理人: | 无 |
地址: | 241000 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 冷却塔 强度 预测 控制系统 及其 方法 | ||
技术领域
本发明涉及冷却塔控制技术领域,尤其涉及一种冷却塔塔筒强度预测控制系统及其方法。
背景技术
冷却塔是发电厂生产发电过程中重要的传热传质设备,其作用是通过热质交换,将高温冷却水的热量散入大气中,将循环冷却水的温度降低。其冷却水作用主要靠冷热两股流体在塔内混合接触,借助两股流体间的水蒸汽分压力差,使热流体部分蒸发并自身冷却。
冷却塔一般采用双曲线型结构,是典型的空间的薄壁壳体结构。目前随着超大冷却塔的发展,冷却塔塔筒壁厚越来越厚,混凝土的等级也有所提高,在大体积混凝土的工程建设中,大体积混凝土中的裂缝产生,塔筒裂缝的产生影响冷却塔的冷却效果和正常工作进程,塔筒的安全性可以由塔筒强度大小进行预测塔筒是否处于安全运行状态,并根据预测的强度大小进行判断冷却塔的安全性。而冷却塔塔筒强度受很多因素影响,如塔筒内部温度、混凝土塔筒的水化热、弹性模量增长等因素均对塔筒强度产生一定的影响。
现有技术中是利用温度传感器进行监测冷却塔筒壁的温度,然后传递到处理器进行分析塔筒是否处于安全状态。现有技术中的多点传感器检测到的大量传递到处理器,数据间具有很强的非线性和不稳定性,处理器分析难度大,时间长,而且不能自动处理不良数据,预测结果易产生误差,预测结果不准确。
发明内容
为了克服现有技术中冷却塔塔筒强度监测中处理器处理不稳定性数据的不准确性,处理器不会自动处理不良数据的不足,本发明提供一种冷却塔塔筒强度预测控制系统及其方法。
本发明的技术方案是:一种冷却塔塔筒强度预测控制系统,该系统包括:
信号采集单元,采集冷却塔的内部温湿度参数、外部温湿度参数、塔筒中心的温度参数和塔筒中心的张力参数;
控制器,控制器连接信号采集单元并接收信号采集单元的参数数据,并使用控制器中的基于灰色预测的径向基函数神经网络模型处理参数数据,对参数中的不良值进行删除或修正,并对参数数据进行统计分析和预测;
人机交互装置,连接控制器,接收控制器的信号并根据控制器的信号指令工作。
所述信号采集单元包括温度传感器和张力传感器,温度传感器均匀分布在冷却塔内、外部对应检测点监测冷却塔内外温度差,冷却塔塔筒中心设有温度传感器和张力传感器,塔筒中心的每一层均匀规律安置温度传感器和张力传感器。
所述控制器中设有数据库,用于存储数据方便灰色预测的径向基函数神经网络模型进行机器训练。
一种冷却塔塔筒强度预测控制系统的方法,所述方法步骤包括:
步骤一、建立塔筒参数数据库,包括试验中冷却塔塔筒材料的温度和张力参数和对应的强度参数,数据库中的数据还包括实时检测到的冷却塔各检测点检测的温度参数、冷却塔塔筒中心的张力参数,数据库中的数据均需进行首次归一化预处理;
步骤二、建立基于灰色预测的径向基函数神经网络模型,利用数据库的数据进行模型训练;
步骤三、基于灰度预测的径向基函数神经网络的模型建立,输入冷却塔的各检测点参数数据,得出冷却塔塔筒强度预测值。
所述步骤一中的温度参数和张力参数由温度传感器和张力传感器检测得到,温度传感器均匀分布在冷却塔内、外部对应检测点监测冷却塔内外温度差,塔筒中心的每一层均匀规律安置温度传感器和张力传感器。
所述步骤建立基于灰色预测的径向基函数神经网络模型,基于灰色预测的径向基函数神经网络模型的建立步骤为:
1)选取各工况条件数据建立灰色预测模型 (1,N)维数为n的信息模型,经过首次归一化处理的数据输入到灰色神经网络中;
2)将输入样本数据进行一次累加生成操作,再次归一化后,设置基于灰色系统的径向基函数神经网络组合模型预测冷却塔塔筒强度的工况条件;
3)以处理后的输入样本作为径向基函数神经网络输入向量,试验中冷却塔塔筒原材料强度作为径向基函数神经网络模型的输出值,对该网络开展训练,其节点数能在训练中自动获取最佳值,以获得相应网络参数;
4)分析训练结果数据与实测数据,进行调整,直至得到符合精度要求的模型参数值,从而建立基于灰色系统的径向基函数神经网络模型预测冷却塔塔筒承受的实时强度。
所述步骤2)中的累加生产操作的公式(1)为: ,式中的公式(2)为:,式中为第i个变量的第k个分析值;再次归一化的公式(3)为:,表示累加生产数据。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于芜湖凯博实业股份有限公司;,未经芜湖凯博实业股份有限公司;许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510110330.0/2.html,转载请声明来源钻瓜专利网。