[发明专利]在多变量观测下基于边缘约束的图像重构方法有效

专利信息
申请号: 201510097078.4 申请日: 2015-03-05
公开(公告)号: CN104700436B 公开(公告)日: 2017-10-24
发明(设计)人: 刘芳;李婉;李玲玲;郝红侠;焦李成;杨淑媛;尚荣华;张向荣;马文萍 申请(专利权)人: 西安电子科技大学
主分类号: G06T9/00 分类号: G06T9/00
代理公司: 陕西电子工业专利中心61205 代理人: 王品华,朱红星
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 多变 观测 基于 边缘 约束 图像 方法
【说明书】:

技术领域

发明属于图像处理技术领域,具体涉及统计压缩感知图像重构方法,可用于对自然图像进行重构。

背景技术

近几年,在信号处理领域出现了一种新的数据理论压缩感知CS,该理论在数据采集的同时实现压缩,突破了传统奈奎采集斯特采样定理的限制,为数据采集技术带来了革命性的变化,使得该理论在压缩成像系统、军事密码学、无线传感等领域有着广阔的应用前景。压缩感知理论主要包括信号的稀疏表示、信号的观测和信号的重构等三个方面。其中设计快速有效的重构算法是将CS理论成功推广并应用于实际数据模型和采集系统的重要环节。

在压缩采样领域,小波基是一组很好的稀疏基。图像经过小波分解后得到的分解系数,分为低频部分和高频部分,低频部分包含原始图像的低频稀疏,通常认为是非稀疏的,而高频部分包含图像的水平、垂直、对角信息,具有良好的稀疏性。目前,经常采用在小波域下对低频全部保留,对高频进行压缩观测的采样方法。该采样方法的优点是可有效提高重构图像质量。

Lihan He等人在文献“Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing”中提出基于小波树结构的贝叶斯压缩感知图像重构方法。该方法对多尺度小波系数分层建立单高斯模型,并通过吉布斯采样重构图像。但该方法将图像展开成列向量进行观测重构,不仅没有结合原始图像数据的先验,并且对计算机内存要求很高,限制了处理图像的大小。

Jiao Wu等人在文献“Multivariate Compressive Sensing for Image Reconstruction in the Wavelet Domain:Using Scale Mixture Models”中提出基于混合尺度模型的多变量压缩感知图像重构MPA。该方法对小波系数构造多变量分布模型,抓住小波系数具有聚集性这一特点,对其统计相关性进行建模,但该方法忽略了保留下来的小波低频系数对图像重构的指导作用,从而导致其不具有鲁棒性,且重构出的图像不够准确。

发明内容

本发明的目的在于针上述已有技术的不足,提出一种在多变量观测下基于边缘约束的图像重构方法,以充分利用保留的低频小波系数对图像重构的指导作用,提高重构图像的准确性。

现本发明目的技术思路是:通过对多变量测量矩阵建立多变量高斯模型,抓住小波的聚集性;通过边缘检测和相关性的联合,指导确定小波系数的非零支撑;通过对非零支撑系数利用吉布斯采样方法依次迭代更新,实现高质量的压缩感知图像重构。

根据上述思路,本发明的技术方案包括如下步骤:

1.一种在多变量观测下基于边缘约束的图像重构方法,包括如下步骤:

(1)接收方接收图像发送方发送的正交随机高斯观测矩阵Φ、低频小波分解系数L、水平高频子带多变量测量矩阵Y1、垂直高频子带多变量测量矩阵Y2和对角高频子带多变量测量矩阵Y3,将三个高频子带多变量测量矩阵统一用Y表示;

(2)根据接收的观测矩阵Φ、低频小波分解系数L和高频子带多变量测量矩阵Y,通过边缘检测和相关性的指导得到非零系数组索引集合:u={s1,s2,...,si,...,sc},其中si代表第i个非零系数组的索引,i=1,2,...,c,c为小于Φ的列数:

(2.1)将接收的低频小波分解系数L和三个全部为零的高频子带进行小波逆变换,得到边缘模糊图像;

(2.2)对边缘模糊图像进行边缘检测,得到边缘位置;

(2.3)提取边缘模糊图像中对应边缘位置的像素得到模糊边缘;

(2.4)对模糊边缘进行一层小波变换,得到模糊边缘小波高频系数和模糊边缘小波低频系数;将模糊边缘小波高频系数绝对值大于阈值h的位置设为1,小于阈值h的位置设为0得到初始模糊位置矩阵,将初始模糊位置矩阵按照多变量矩阵的形式排列成M×Q维的多变量模糊位置矩阵E,其中M为Φ的列数,Q为Y的列数,阈值h=0.2;

(2.5)根据观测矩阵Φ的转置和高频子带多变量测量矩阵Y相乘得到的相关性矩阵ΦT*Y,将该相关性矩阵的绝对值|ΦT*Y|和多变量模糊位置矩阵E进行加权求和,得到系数重要性矩阵V=|ΦT*Y|+w*E,其中w为加权系数;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510097078.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top