[发明专利]基于NSCT和PCNN的数字图像增强方法有效

专利信息
申请号: 201510012083.0 申请日: 2015-01-09
公开(公告)号: CN104616252B 公开(公告)日: 2018-01-19
发明(设计)人: 何国栋;杨凌云;冯友宏;丁绪星 申请(专利权)人: 安徽师范大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 北京润平知识产权代理有限公司11283 代理人: 孙向民,董彬
地址: 241002 安徽省芜*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 nsct pcnn 数字图像 增强 方法
【说明书】:

技术领域

发明涉及数字图像领域,具体地,涉及一种基于NSCT和PCNN的数字图像增强方法。

背景技术

在图像获取的过程中,存在多种因素的影响,如噪声、曝光、抖动等,图像的视觉效果受这些因素的干扰而与真实的图像之间有一些差异。从审美和后期处理的角度出发,需要对图像质量进行改善。图像增强通过相关技术手段,对干扰因素进行抑制,突出图像中感兴趣的某些特征,提高图像的视觉效果,使得处理后的图像比原图像更适合观看或后期的处理。数字图像增强技术是一种重要的图像质量改善技术,目前图像增强技术在医学、遥感、军事等众多领域得到广泛的应用。

目前的图像增强技术可分为空域增强技术和变换域增强技术两大类。空域法直接对像素进行处理,例如经典的直方图均衡化处理方法,通过变换函数使像素灰度直方图分布趋于均匀。变换域增强方法首先对图像进行变换,对变换后的系数进行相关增强处理,然后经过对应的逆变换,得到增强的图像。常用的变换方法有傅里叶变换,离散余弦变换,小波变换等。

非抽样轮廓波变换(NSCT)是一种新的多尺度多方向图像变换方法,变换中没有上、下采样过程,因此具有平移不变性,在图像的边缘不会出现伪吉布斯现象,相比其他的变换方法,具有更好的应用前景。脉冲耦合神经网络(PCNN)是由Eckhorn为解释在猫的大脑视觉皮层中实验所观察到的与特征有关的神经元同步行为现象而提出的,有着重要的生物学背景,是一种不同于传统人工神经网络的新型神经网络。PCNN的这个生物学背景使它在图像处理中具有先天的优势,有着与传统方法进行图像处理所无法比拟的优越性。PCNN是当前智能信息处理的最新研究领域之一,目前它的理论研究仍处在发展阶段。

用PCNN进行二维图像处理时,构造与图像同样大小的神经网络,也即M×N的二维图像矩阵相当于M×N维的PCNN神经元模型,将灰度图像的像素强度作为相应神经元的外部激励,每个像素的灰度值作为每个神经元的输入强度。每一个神经元输出与周围某个邻域的神经元输入相连接,这样就构成一个基于PCNN的图像处理系统,网络的输出为随时间变化的二值图像。由于连接权的影响,如果受到图像某一点像素强度的激励而使相应的神经元点火(即输出为1),则与该点有连接的相邻神经元在其点火的带动下也可能发生点火,这里称这一特性为捕获。重复上述过程,得到一个点火映射图。

发明内容

本发明的目的是提供一种基于NSCT和PCNN的数字图像增强方法,该基于NSCT和PCNN的数字图像增强方法将NSCT与PCNN结合,并设计了一个自适应增强函数,根据具有生物学背景的PCNN点火次数对高频系数进行增强,且能依据分解层数自适应改变增强的强度,对图像进行有效地增强。

为了实现上述目的,本发明提供了一种基于NSCT和PCNN的数字图像增强方法,其特征在于,该方法包括:

S101,将所述数字图像进行非抽样轮廓波变换(NSCT),得到图像低频系数和图像高频系数;

S102,将所述图像高频系数输入脉冲耦合神经网络(PCNN),得到对应的点火映射图;

S103,根据点火映射图,对所述图像高频系数进行增强;

S104,将所述图像低频系数和所述增强图像高频系数进行非抽样轮廓波反变换,得到增强的图像。

优选地,在步骤S101中,

S201,将所述数字图像进行三级非抽样轮廓波变换(NSCT),得到第一层高频系数、第二层高频系数、第三层高频系数和低频系数;

S202,将所述第一层高频系数、第二层高频系数、第三层高频系数都分成八个方向,得到多分辨率分析的图像低频系数和图像高频系数。

优选地,在步骤S102中,

将所述第一层高频系数、第二层高频系数和第三层高频系数分别通过脉冲耦合神经网络公式得到一一对应的点火映射图;

所述脉冲耦合神经网络公式为:

Li,j[n]=∑Wi,j·Yi,j[n-1];

Ui,j[n]=Fi,j[n]·(1+β·Li,j[n]);

θi,j[n]=exp(-αE)·θi,j[n-1]+Vθ·Yi,j[n-1];

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽师范大学,未经安徽师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510012083.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top