[发明专利]一种基于Laplacian算子的特征选择方法有效

专利信息
申请号: 201410713386.0 申请日: 2014-11-28
公开(公告)号: CN104408480B 公开(公告)日: 2018-05-04
发明(设计)人: 接标;左开中;王涛春;丁新涛;胡桂银;罗永龙 申请(专利权)人: 安徽师范大学
主分类号: G06K9/66 分类号: G06K9/66;G06K9/46
代理公司: 南京钟山专利代理有限公司32252 代理人: 戴朝荣
地址: 241002 *** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 laplacian 算子 特征 选择 方法
【权利要求书】:

1.一种基于Laplacian算子的特征选择方法,应用于寻找疾病的生物标志和脑疾病的分类,其特征在于,具体步骤如下:

步骤一、建立Lasso特征选择方法优化的目标函数:

minW12||Y-XTw||22+λ||w||1;]]>

其中,X表示给定训练样本集:X=[x1,x2,...,xN]T∈RN×d,xi表示第i个样本的特征向量,N表示训练样本个数,d表示特征维数;Y表示样本所对应的相应向量:Y=[y1,y2,...,yN]∈RN,yi表示样本的类标签,且yi∈{+1,-1};w表示特征向量的回归系数;λ>0表示一个正则化参数,用于平衡模型复杂度和数据拟合程度;

步骤二、在步骤一的Lasso目标函数中引入一个正则化项:

minwΣi,jN||f(xi)-f(xj)||2Si,j=2wTXTLXw;]]>

其中,S=[Sij]表示一个相似矩阵,定义了两个样本之间相似性;xi和xj分别表示两个样本;L=D-S表示Laplacian矩阵,D表示对角矩阵,且

根据所引入的正则化项,采用基于Laplacian算子的特征选择方法,构建Lap-Lasso目标函数模型,其表达如下:

minw12||Y-XYw||22+λ||w||1+βwTXTLXw;]]>

其中,λ和β是两个大于0的常数;

步骤三、求解上述Lap-Lasso目标函数模型,其中,Lasso稀疏化项使得少量的特征能被选择,而Laplacian正则化项保留同类标签样本的局部相邻结构信息,实现帮助诱导出更有判别力的特征。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽师范大学,未经安徽师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410713386.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top