[发明专利]一种基于人眼视觉特性的图像增强评价方法有效

专利信息
申请号: 201410709165.6 申请日: 2014-11-30
公开(公告)号: CN105719264B 公开(公告)日: 2018-08-21
发明(设计)人: 郝颖明;朱枫;范晓鹏;吴清潇;付双飞;欧锦军;周静 申请(专利权)人: 中国科学院沈阳自动化研究所
主分类号: G06T7/00 分类号: G06T7/00
代理公司: 沈阳科苑专利商标代理有限公司 21002 代理人: 徐丽;周秀梅
地址: 110016 *** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 视觉 特性 图像 增强 评价 方法
【权利要求书】:

1.一种基于人眼视觉特性的图像增强评价方法,其特征在于,包括以下步骤:

扫描原始图像与增强后图像,计算每一像素点(i0,j0)所在原始图像、增强图像的局部背景灰度差别、局部背景灰度均值,和原始图像与增强图像的相关系数:

所述局部背景灰度差别是指除去中心位置(i0,j0)像素,邻域内其他像素对应的灰度差别中最大的灰度差别;

针对原始图像与增强图像,分别根据局部背景灰度差别与局部背景灰度均值计算每一个像素位置上的临界可见偏差;

根据上述计算结果进行累计打分:在累计打分之前变量F与变量H的初始值为零;

针对每一个像素,当原始图像的局部背景灰度差别大于等于原始图像相应位置上的临界可见偏差时,变量F累计增加1分;

当该位置上原始图像与增强图像的相关系数与增强图像局部背景灰度差别的乘积大于等于增强图像相应位置的临界可见偏差时,变量H累计增加1分;

分数H/F即为增强算法的得分。

2.根据权利要求1所述的一种基于人眼视觉特性的图像增强评价方法,其特征在于,所述局部背景灰度差别的计算方法为:

mg0=max{mg1,mg2,mg3,mg4}

其中,

(i0,j0)代表原始图像或者增强图像的像素位置;mg0代表像素点(i0,j0)的局部背景灰度差别,模板Gk的原点(0,0)在矩阵的左上角,I为原始图像或增强后图像。

3.根据权利要求1所述的一种基于人眼视觉特性的图像增强评价方法,其特征在于,所述局部背景灰度均值的计算方法为:

其中,

(i0,j0)代表原始图像或者增强图像的像素位置,I为原始图像或增强后图像,模板B为5*5的矩形邻域,并且原点(0,0)在矩阵的左上角。

4.根据权利要求1所述的一种基于人眼视觉特性的图像增强评价方法,其特征在于,所述原始图像与增强图像的相关系数的计算方法为:

其中,cov()代表协方差,Clocal,Dlocal分别代表原始图像与增强后图像以(i0,j0)为中心的局部区域,cov(Clocal,Clocal)代表Clocal的方差,cov(Dlocal,Dlocal)代表Dlocal的方差。

5.根据权利要求1所述的一种基于人眼视觉特性的图像增强评价方法,其特征在于,所述临界可见偏差的计算方法为:

Jnd=max{f1(bg,mg),f2(bg)}

其中,

f1(bg,mg)=mg·α(bg)+β(bg)

α(bg)=bg·0.0001+0.115

β(bg)=λ-bg·0.01

f1是人眼视觉特性中对比度掩盖效应带来的最小可分辨灰度差别的阈值;f2是人眼视觉特性中亮度掩盖效应带来的人眼最小可分辨灰度差别的阈值;f1与f2中的最大值代表了临界可见偏差参数;T0,T1,γ,λ与具体的显示器、观测环境有关,在实际应用中可事先测定,bg是局部背景灰度均值,mg代表局部背景灰度差别。

6.根据权利要求1所述的一种基于人眼视觉特性的图像增强评价方法,其特征在于,所述分数H/F:当H/F大于1时,说明通过图像增强算法处理,人眼可以分辨更多的图像细节;当H/F小于1时,可能是因为通过图像增强算法处理,人眼可以分辨的图像细节减少了,另外也可能是图像增强算法引入了很多的噪声,降低了原始图像与增强图像的相关系数;当H/F趋近1时,说明图像增强算法并没有带来很多人眼可感知的图像变化。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院沈阳自动化研究所,未经中国科学院沈阳自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410709165.6/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top