[发明专利]基于农田图像检测障碍物的方法有效

专利信息
申请号: 201410683376.7 申请日: 2014-11-25
公开(公告)号: CN104361598B 公开(公告)日: 2017-07-11
发明(设计)人: 韩永华;汪亚明 申请(专利权)人: 浙江理工大学
主分类号: G06T7/194 分类号: G06T7/194;G06T7/90
代理公司: 杭州求是专利事务所有限公司33200 代理人: 邱启旺
地址: 310018 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 农田 图像 检测 障碍物 方法
【权利要求书】:

1.一种基于农田图像检测障碍物的方法,其特征在于,该方法包括以下步骤:

(1)采集彩色农田图像,并将采集到的彩色农田图像通过公式I=(R+G+B)/3转换成第一灰度图像F,公式中R指采集的彩色图像中红色分量灰度值,G指绿色分量灰度值,而B指蓝色分量灰度值,I表示第一灰度图像F的灰度值;

(2)再将彩色农田图像通过公式I'=2×G-R-B转换成第二灰度图像F1,I'表示第二灰度图像F1的灰度值;

(3)采用最大类间方差法对第二灰度图像F1进行分割,获得二值图像F3;

(4)获取二值图像F3中像素值为零的坐标,将第一灰度图像F中相同坐标位置处的像素值置零,获得第三灰度图像F4;

(5)对第三灰度图像F4进行5级Haar小波分解,得到5级分辨率不同的子图像及近似级子图像,并按下式计算图像小波分解后2~5级各级子图像的总频率:

Cl=Clh+Cld+Clv

式中l为小波多分辨率分解的第l级,h为l级水平分解系数图像,d为l级对角分解系数图像,v为l级垂直分解系数图像,Clh为l级水平分解系数图像的总频率,Cld为l级对角分解系数图像的总频率,Clv为l级垂直分解系数图像的总频率;其中,Clx由以下公式得到:

<mrow><msub><mi>C</mi><mrow><mi>l</mi><mi>x</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mi>M</mi><mo>&times;</mo><mi>N</mi></mrow></mfrac><munderover><mo>&Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><munderover><mo>&Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>f</mi><mrow><mi>l</mi><mi>x</mi></mrow></msub><msup><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mn>2</mn></msup></mrow>

式中M×N为小波多分辨率分解第l级各方向子图像的大小,flx(i,j)为坐标点(i,j)处的小波多分辨率分解系数;其中,x=h,d,v;

(6)通过步骤(5)的计算找到总频率最多的级,将小波分解后获得的近似级及子图像总频率最多的级的小波分解系数保留,其它级子图像的小波分解系数置零后,重构成新的图像;

(7)对步骤(6)重构后的新图像进行两次OTSU分割获得图像F5;

(8)求图像F5中像素值的平方,然后将求平方后的像素值按图像行相加,投影成曲线,曲线的跳变点即为农田中的障碍物。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江理工大学,未经浙江理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410683376.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top