[发明专利]一种鲁棒通信信号调制识别方法有效
申请号: | 201410680905.8 | 申请日: | 2014-11-24 |
公开(公告)号: | CN104378176B | 公开(公告)日: | 2017-11-03 |
发明(设计)人: | 吴芝路;赵苑珺;杨柱天;张立宪 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | H04L1/00 | 分类号: | H04L1/00 |
代理公司: | 哈尔滨市松花江专利商标事务所23109 | 代理人: | 杨立超 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 通信 信号 调制 识别 方法 | ||
技术领域
本发明涉及通信信号调制识别方法。
背景技术
随着软件无线电和认知无线电技术领域的发展,基于特征提取和模式识别的多体制通信信号自动调制识别方法(Automation Modulation Recognition,AMR)研究取得了很多进展和成果,但目前仍不能满足通信信号调制识别实际应用的需求,仍存在很多挑战。尤其是AMR的推广能力不佳一直是阻碍其实际应用的重要瓶颈。为解决AMR方法推广能力差、需要实时信噪比估计的问题,本项目从特征遴选和分类器设计两方面入手研究具有推广能力的多体制通信信号调制识别机理和方法,使AMR方法具有推广能力强、识别率高、计算复杂度低易于实时识别的特性。
通信信号自动调制模式识别是软件无线电与认知无线电领域的核心科学问题,10多年来一直受到广泛的关注,基于人工智能与机器学习的特征提取和分类器AMR方法成为近几年的研究重点课题,取得了大量的研究成果[5-10]。然而,通信信号的自动调制识别具有其特殊性,接收信号的信噪比变化范围大,变化迅速。具有推广能力的通信信号AMR方法可以很好的适应这种复杂的信噪比环境,但具有推广能力的AMR研究机理问题至今仍未解决。
在软件无线电和认知无线电领域应用中,高斯白噪声是影响通信信号调制自动识别算法性能的一个重要因素。与其它模式识别问题相比,通信信号AMR中的推广能力具有一定的特殊性。由于通信信号受噪声的影响非常明显,尤其是在信噪比变化剧烈的情况下,由不同信噪比造成的样本差异远大于同一信噪比条件下样本的个体差异。因此通信信号AMR的推广能力主要是指AMR对于输入信号的信噪比变化的适应能力,及在不同信噪比下样本的泛化识别能力。传统AMR算法为了保证多个信噪比条件下具有很好的识别准确率,需要训练多个识别器,即在各个信噪比下分别训练分类器。在训练阶段要针对各个信噪比环境分别进行训练,工作量极大。
发明内容
本发明为了解决传统AMR算法需要训练多个识别器以保证在较大信噪比范围内的有效性的问题,即在训练阶段需要针对不同信噪比环境分别训练识别器而导致的工作量巨大的问题。进而提出了一种在较大信噪比范围内都适用于的鲁棒通信信号调制识别方法。
一种鲁棒通信信号调制识别方法包括以下步骤:
步骤一:获取通信信号样本s(t),对通信信号样本s(t)进行魏格纳(Wigner-Ville)变换,得到通信信号样本s(t)的时-频-能量三维分布,即WVD分布;
通信信号样本s(t)的WVD定义如下:
其中,τ表示滞后时间,t表示时间,ω表示角频率,j为虚部基本单位;
z(t)为s(t)的解析信号,定义为:
z(t)=s(t)+jH[s(t)](2)
而H[s(t)]表示s(t)的Hilbert变换,z*(t)表示函数z(t)的共轭函数;
步骤二:根据通信信号样本s(t)的WVD分布,提取二阶立体自相关特征,建立二阶立体自相关特征集;
步骤三:在信噪比SNR为[6dB,20dB]的范围内,在二阶立体自相关特征集中对二阶立体自相关特征进行遴选,获得10维具有噪声鲁棒性的通信信号样本s(t)特征,形成鲁棒特征集:
采用遗传算法按着公式(3)对251维二阶立体自相关特征进行遴选,选取NMSE最小的10维特征
其中,NMSE为相对均方误差,f(n)表示信噪比为n时的特征值,表示不同信噪比下特征值的平均值;
根据遗传算法的优化结果选取噪声鲁棒性最好的10维二阶立体自相关特征组成鲁棒特征集,对通信信号样本s(t)进行表示;
步骤四:应用步骤三所述鲁棒特征集表示的通信信号样本s(t)训练建立一类支持向量机组;对每一类调制方式的通信信号样本s(t)训练一个一类支持向量机;
步骤五:将待识别通信信号样本sx(t)输入步骤四建立的一类支持向量机组,计算一类支持向量机组的输出函数Yi(x),i=1,…,I;
其中,Yi表示第i个一类支持向量机的输出结果,I为通信信号样本s(t)中调制方式种类数;
步骤六:计算待识别通信信号样本sx(t)属于通信信号样本s(t)中包含的各种调制方式的概率
选取概率最大的调制类别为最终的调制识别结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410680905.8/2.html,转载请声明来源钻瓜专利网。