[发明专利]基于分档关键词阈值组合评估的垃圾评论预选方法及装置有效
申请号: | 201410607948.3 | 申请日: | 2014-10-31 |
公开(公告)号: | CN104484330B | 公开(公告)日: | 2019-07-23 |
发明(设计)人: | 徐斌 | 申请(专利权)人: | 浙江工商大学 |
主分类号: | G06F16/90 | 分类号: | G06F16/90 |
代理公司: | 杭州裕阳联合专利代理有限公司 33289 | 代理人: | 姚宇吉 |
地址: | 310018 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 分档 关键词 阈值 组合 评估 垃圾 评论 预选 方法 装置 | ||
1.一种基于分档关键词阈值组合评估的垃圾评论预选方法,其特征在于,包括:
获取评论信息的关键词集的最小支持度;
利用Apriori算法根据最小支持度获得频繁关键词和次频繁关键词;
其中,利用Apriori算法根据最小支持度获得次频繁关键词的具体步骤为:
在评论信息的全局关键词中除去频繁关键词,在剩下的关键词进行搜索,计算每个关键词的支持度,垃圾评论的比例为x%,将支持度大于等于(100-x)%的关键词提取,得出次频繁关键词;
根据频繁关键词和次频繁关键词在评论中出现的情况判断是否为垃圾评论。
2.如权利要求1所述的基于分档关键词阈值组合评估的垃圾评论预选方法,其特征在于,还包括:获得评论信息中的全局关键词,形成关键词集。
3.如权利要求2所述的基于分档关键词阈值组合评估的垃圾评论预选方法,其特征在于,获取全局关键词的具体方法包括:确定评论领域以及全局评论信息,对全局评论信息进行分词,计算每个词汇的单次频度、重复频度以及权值,抽取出全局关键词。
4.如权利要求1所述的基于分档关键词阈值组合评估的垃圾评论预选方法,其特征在于,获取关键词集的最小支持度的具体方法包括:获取垃圾评论的比例x,而关键词集的最小支持度为(100-x)%。
5.如权利要求1所述的基于分档关键词阈值组合评估的垃圾评论预选方法,其特征在于,获得频繁关键词的方法包括:令包含k个关键词的频繁关键词集为频繁k-关键词集,记为Lk,进行迭代计算:在第一次迭代过程中,候选集为所有1-关键词集,在这些关键词集中找到支持度大于等于指定的最小支持度阈值的1-关键词集,成为频繁1-关键词集L1,不再考虑其他关键词;第二次迭代过程在L1基础上进行,通过Lk*Lk产生候选集,计算候选集中所有2-关键词集的支持度,支持度大于等于最小支持度阈值的2-关键词集选中为频繁2-关键词集L2;重复上述过程,直到无法产生候选关键词集为止。
6.如权利要求1所述的基于分档关键词阈值组合评估的垃圾评论预选方法,其特征在于,当频繁关键词在评论中全部出现且次频繁关键词在评论中至少出现一个时,该评论为正常评论,其余评论都为垃圾评论。
7.一种基于分档关键词阈值组合评估的垃圾评论预选装置,其特征在于,包括:
最小支持度获取模块,用于获取评论信息的关键词集的最小支持度;
频繁关键词获取模块,根据最小支持度获得频繁关键词和次频繁关键词,获得次频繁关键词的具体步骤为:
在评论信息的全局关键词中除去频繁关键词,在剩下的关键词进行搜索,计算每个关键词的支持度,垃圾评论的比例为x%,将支持度大于等于(100-x)%的关键词提取,得出次频繁关键词;
规则应用模块,根据频繁关键词和次频繁关键词在评论中出现的情况判断是否为垃圾评论。
8.如权利要求7所述的基于分档关键词阈值组合评估的垃圾评论预选装置,其特征在于,还包括关键词集获取单元,获得评论信息中的全局关键词,形成关键词集。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工商大学,未经浙江工商大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410607948.3/1.html,转载请声明来源钻瓜专利网。
- 上一篇:信息的展现方法及装置
- 下一篇:一种教育资源语义标注方法