[发明专利]一种最优对比度和最小信息损失的图像去雾方法有效

专利信息
申请号: 201410504518.9 申请日: 2014-09-26
公开(公告)号: CN104200445B 公开(公告)日: 2017-04-26
发明(设计)人: 谢从华;黄晓华;高蕴梅;乔伟伟;常晋义 申请(专利权)人: 常熟理工学院
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 江苏圣典律师事务所32237 代理人: 胡建华
地址: 215500 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 最优 对比度 最小 信息 损失 图像 方法
【说明书】:

技术领域

发明涉及计算机图像处理,特别涉及一种最优对比度和最小化信息损失的图像去雾方法。

背景技术

自2012年以来,全国74个重点监测城市近半数受到了严重雾霾污染,雾霾笼罩在我们的上空,遮蔽了视线,相机和视频监控等成像系统所捕获的图像色彩暗淡、对比度变低,图像质量的严重退化,直接影响了图像的视觉效果,严重影响它们的应用范围,在很多应用场合需要对受到雾霾污染的图像进行去雾处理。

大气介质主要由空气分子、水汽和气溶胶组成,空气中所含气溶胶粒子是雾霾形成的主要因素,也是图像质量产生退化的根本原因。雾霾天气下,物体表面反射的光在到达成像设备的过程中会受到空气悬浮颗粒的影响,从而使得设备无法获得清晰图片。气溶胶粒子对光线有散射作用,散射损失使“透射光”强度衰减,造成了图像的对比度下降。

图像去雾研究最早可追溯到1992年L.Bissonnette等人针对雾和雨天气的图像去雾。图像去雾技术经历了二十多年的发展,取得了较大的进展,不断有新思想和新方法产生并用于实际工程中,主要有基于模型和基于非模型两个方向。

基于非模型的方法考虑图像呈现的低亮度和低对比度的特征,以常规的图像增强方法作为基本的处理手段。基于非模型的方法不需要分析图像退化的原因,只按特定的需要突出图像中感兴趣的部分信息,同时将不需要的信息进行衰减或去除。主要包括空间域和频率域两类方法,典型的方法包括直方图均衡化算法、曲波变换、同态滤波算法、基于大气调制传递函数、小波方法及Retinex算法等。基于非模型的去雾方法只是增强图像的对比度,没有考虑雾天图像模糊机理和退化原因,没有考虑雾霾浓度与目标景深成正比,实际上只是在一定程度上改善了图像的视觉效果,实质上并不是真正的图像去雾。

基于模型的去雾方法通过分析图像退化原因,对大气散射建模,实现图像的恢复。基于模型的方法分为三类:(1)基于偏微分方程的复原;(2)基于深度关系的复原;(3)基于先验信息的复原。

基于偏微分方程的图像去雾方法比较适合图像的色彩清晰度和对比度有较高要求的场合。借助大气散射模型,建立户外图像全局去雾和局部去雾的能量最优化模型,推导相应的包含图像梯度和场景景深的偏微分方程。但此方法有一个不足之处在于图像深度信息的获取所要求的渐进修改大气散射系数都需要通过用户的交互操作。

基于深度关系的方法利用深度关系图对图像进行去雾处理。通过采集不同天气条件下对应的场景图像计算出背景图像的深度图,再结合相关的启发式信息得到前景目标对象的深度。尽管这些方法的去雾效果较为令人满意,但其需要借助参考图像的要求过于苛刻,在实际应用中难以实现。

基于先验信息的复原方法,需要多幅图像或更多辅助信息。根据场景深度信息是否已知可分为两类。一类是假设场景深度信息已知的方法,通过复原场景对比度,使用一个简单的高斯函数对场景中的光路进行预测,但此方法需要雷达装置获取场景深度。另一类是用辅助信息提取场景深度。利用二值散射模型,不同散射光的偏振特性和交互式景深估计等不同角度提取场景深度信息。但偏振光的方法只能应用于大气散射程度较弱的薄雾,而不适于大雾天气。有些方法则需要用到不同天气状态下相同景物的图像或用户的交互,很难满足对变换场景的实际应用需求。

依据深度信息的去雾算法,已经发展到实现单幅图像去雾的程度。Tan提出了一种扩大带雾图像的局部对比度的单幅图像去雾方法,但存在颜色过饱和,导致光晕伪影现象。Fattal提出了一种基于独立成份分析的方法,通过假定透过率和表面投影在局部区域是不相关的,估算景物的反射率,推断景物光在空气中传播时的透过率,最后实现场景的恢复,但此方法只适合薄雾图像。He提出了基于暗原色先验理论的经典单幅图像去雾,但此方法不适合目标亮度和大气光相似的图像。

现有的这些方法比较适合特殊的图像,都有各自的优点。但是,部分去雾方法表现为对比度过度拉伸,或不能正确估计景深导致不能去除雾霾较重的图像,或只考虑对比度最大化而没有丢失了原图的重要信息,或图像的天空部分颜色被扭曲。

发明内容

为解决上述技术问题,本发明提出一种最优对比度和最小化信息损失的图像去雾方法。

为实现上述发明目的,本发明提出一种基于最优对比度和最小化信息损失的图像去雾方法,其特征在于该方法利用利用高斯混合模型,四分树,最大化对比度和最小信息损失等函数实现了图像去雾方法。该方法的具体步骤包括:

步骤1,建立基于McCartney大气散射模型的雾霾图像模型;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于常熟理工学院,未经常熟理工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410504518.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top