[发明专利]基于高阶奇异值分解的磁共振图像去噪方法有效
申请号: | 201410477499.5 | 申请日: | 2014-09-18 |
公开(公告)号: | CN104200441B | 公开(公告)日: | 2017-03-22 |
发明(设计)人: | 冯衍秋;张鑫媛;徐中标;陈武凡 | 申请(专利权)人: | 南方医科大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙)11350 | 代理人: | 赵蕊红 |
地址: | 510515 广东省广州市广州*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 奇异 分解 磁共振 图像 方法 | ||
技术领域
本发明属于医学图像处理的技术领域,具体地说属于一种基于高阶奇异值分解的磁共振图像去噪方法。
背景技术
磁共振成像是当前临床医学影像学的重要检查手段之一。然而,由于成像机制的影响,成像过程中不可避免的会引入噪声。图像中的噪声会大大降低图像的质量,使得图像边缘变得模糊,细微结构难以辨认,从而影响临床诊断,降低分析任务的可信度,例如图像配准,图像分割和一些相关组织的参数测量(如灌注图像和弛豫时间的相关参数)。因此,对于临床诊断和图像分析来说,降低噪声是十分必要的。
降低噪声可以通过两种方法来实现,一种是增加采集次数,平均多次采集的数据来提高图像的信噪比。这种方法是以增加采集时间来提高信噪比的。另一种方法是通过图像后处理滤波技术来提高信噪比。图像滤波技术不需要增加采集时间,因而在临床研究中得到广泛应用。
近期,有研究者采用高阶奇异值分解方法(Rajwade, A., Rangarajan, A., Banerjee, A.. Image denoising using the higher order singular value decomposition. IEEE Trans Pattern Anal Mach 2013,Intell 35, 849-862)对加有高斯噪声的自然图像进行去噪。该方法是一种简单的,基于块匹配,机器学习的稀疏去噪方法。该方法是将相似块组成高维数组,利用相似块之间的稀疏性进行去噪。该方法针对不同的高维数组,通过训练学习得到不同的自适应基,能够更好地表达图像内容。不同于奇异值分解,高阶奇异值分解不需要将高维数组展开成矩阵来进行分解,不会破坏块内部的相关信息。然而,这种通过图像本身学习得到的基,易受图像中噪声的影响尤其是当噪声严重的时候。
因此,针对现有技术不足,提供一种对加有莱斯噪声的磁共振图像进行去噪处理的方法以克服现有技术不足甚为必要。
发明内容
本发明的目的在于针对现有技术不足,提供一种基于高阶奇异值分解的磁共振图像去噪方法,具有去噪性好,且能够提高去噪处理后的图像质量。
本发明的上述目的通过如下技术手段实现。
一种基于高阶奇异值分解的磁共振图像去噪方法,依次包括如下步骤:
(1)对加有莱斯噪声的原始磁共振图像进行方差稳定变换,将依赖信号分布的莱斯噪声变成独立于信号分布的噪声,得到变换后的噪声图像;
(2)将变换后的噪声图像中的每一个像素作为标的像素或者按照一定距离间隔取像素作为标的像素,取标的像素及其周围的像素作为参考块,执行以下操作进行第一次高阶奇异值分解去噪,具体是:
(a)通过k最近邻方法依次逐个寻找参考块的相似块,组成高维数组;
(b)对高维数组进行高阶奇异值分解变换,得到对应的系数和自适应基;
(c)通过第一阈值操作,将绝对值小于第一阈值的系数置零得到修正后的系数;
(d)根据自适应基与修正后的系数,进行高阶奇异值分解逆变换,将逆变换后的结果作为该高维数组中所有图像块去除噪声后的估计值;
(3)对步骤(2)得到的估计值加权平均进行像素合并,得到像素合并后的估计值,对每一个像素进行像素合并构成第一次去噪后的图像;
(4)对方差稳定变换后的噪声图像和第一次去噪后的图像进行加权平均,得到第一次加权平均后的图像;
(5)对第一次加权平均后的图像进行第二次高阶奇异值分解去噪,具体是:
(5.1)将第一次加权平均后的图像中的每一个像素作为二次标的像素或者按照一定距离取像素作为二次标的像素,取二次标的像素及其周围的像素作为二次参考块,执行以下操作:
(a)以第一次去噪后的图像进行相似块判断,通过k最近邻方法依次逐个寻找二次参考块的二次相似块,组成二次高维数组;
(b)对二次高维数组进行高阶奇异值分解变换,得到对应的二次系数和二次自适应基;
(c)通过二次阈值操作,将绝对值小于二次阈值的二次系数置零得到修正后的二次系数;
(d)根据二次自适应基与修正后的二次系数,进行高阶奇异值分解逆变换,将逆变换后的结果作为该高维数组中所有图像块去除噪声后的二次估计值;
(5.2)对步骤(5.1)得到的二次估计值加权平均进行像素合并,得到像素合并后的二次估计值,对每一个像素进行像素合并构成第二次去噪后的图像;
(6)对第二次去噪后的图像进行方差稳定逆变换,得到最终的滤波图像。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南方医科大学,未经南方医科大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410477499.5/2.html,转载请声明来源钻瓜专利网。