[发明专利]一种基于图分解的多模式网络话题生成方法及其系统有效

专利信息
申请号: 201410313181.3 申请日: 2014-07-02
公开(公告)号: CN104166675B 公开(公告)日: 2018-07-06
发明(设计)人: 黄庆明;贾飞;庞俊彪 申请(专利权)人: 中国科学院计算技术研究所
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 北京律诚同业知识产权代理有限公司 11006 代理人: 祁建国;李岩
地址: 100190 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 话题 多模式网络 图分解 截断 重构 网络话题 极大团 无向图 排序 候选网络 生成系统 网络数据 多模式 检测 转化
【权利要求书】:

1.一种基于图分解的多模式网络话题生成方法,其特征在于,包括:

网络话题检测步骤:将网络数据转化为一无向图,基于预定阈值将所述无向图截断为多个截断图,并在所述截断图中寻找表示候选网络话题的极大团,基于所述极大团获取多模式种子话题,所述网络话题检测步骤还包括:

数据表示步骤:采用所述无向图代表所述网络数据间的关系,所述无向图的节点表示所述网络数据,所述无向图的边表示所述网络数据之间的相似度;

图截断步骤:通过多个所述预定阈值依次将所述无向图截断为多个所述截断图,根据预定门限参数,将所述截断图分为高阈值截断图和低阈值截断图;

寻找话题步骤:在所述高阈值截断图中寻找所述极大团作为种子话题,在所述低阈值截断图中寻找所述种子话题的演化,即包含所述种子话题的极大团;

网络话题排序步骤:通过所述种子话题对原始的所述无向图进行重构,获取所述种子话题的重构系数,根据所述重构系数对所述种子话题进行排序,使用户发现感兴趣的话题;

性能评价步骤:根据检测到的所述种子话题中的正确话题数目和错误话题数目,同时对所述话题生成方法进行综合性能评价。

2.根据权利要求1所述基于图分解的多模式网络话题生成方法,其特征在于,所述性能评价步骤还包括:

话题正确性匹配步骤:检测到的所述种子话题与真正存在话题的匹配度大于预定匹配度阈值,则认为所述种子话题为正确检测的话题,否则所述种子话题为错误检测话题。

3.根据权利要求1所述基于图分解的多模式网络话题生成方法,其特征在于,所述网络数据之间的相似度公式为:

其中,所述无向图的边E={eij}表示相似度,所述h表示元素的特征直方图,所述hi(k)表示第i个元素的第k维特征。

4.根据权利要求1所述基于图分解的多模式网络话题生成方法,其特征在于,所述截断图表示为:

在所述预定阈值li下将所述无向图截断,得到该阈值下的截断图Gi

5.一种基于图分解的多模式网络话题生成系统,采用如权利要求1-4中任一项所述话题生成方法,其特征在于,所述话题生成系统包括:

网络话题检测模块:采用无向图表示网络数据间的关系,基于预定阈值将所述无向图截断为多个截断图,并在所述截断图中寻找表示候选网络话题的极大团,基于所述极大团获取多模式种子话题;

网络话题排序模块:通过所述种子话题对原始的所述无向图进行重构,获取所述种子话题的重构系数,根据所述重构系数对所述种子话题进行排序,使用户发现感兴趣的话题;

性能评价模块:根据检测到的所述种子话题中包含的正确话题数目和错误话题数目,同时对所述话题生成方法进行综合性能评价。

6.根据权利要求5所述基于图分解的多模式网络话题生成系统,其特征在于,所述网络话题检测模块还包括:

数据表示模块:将所述无向图代表所述网络数据间的关系,所述无向图的节点表示所述网络数据,所述无向图的边表示所述网络数据之间的相似度;

图截断模块:通过多个所述预定阈值依次将所述无向图截断为多个所述截断图,根据预定门限参数,所述截断图包含高阈值截断图和低阈值截断图;

寻找话题模块:在所述高阈值截断图中寻找所述极大团作为种子话题,在所述低阈值截断图中寻找所述种子话题的演化,即包含所述种子话题的极大团。

7.根据权利要求6所述基于图分解的多模式网络话题生成系统,其特征在于,所述性能评价模块还包括:

话题正确性匹配模块:检测到的所述种子话题与真正存在话题的匹配度大于预定匹配度,则认为所述种子话题为正确检测的话题,否则所述种子话题为错误检测话题。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410313181.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top