[发明专利]一种活性粉末混凝土大偏心受压构件极限荷载的计算方法有效
申请号: | 201410298879.2 | 申请日: | 2014-06-27 |
公开(公告)号: | CN104036149B | 公开(公告)日: | 2017-02-01 |
发明(设计)人: | 施成华;曹成勇;龙广成;雷明锋;彭立敏;杨伟超;马辉;龙敏 | 申请(专利权)人: | 中南大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00;G06F17/50 |
代理公司: | 长沙市融智专利事务所43114 | 代理人: | 欧阳迪奇 |
地址: | 410083 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 活性 粉末 混凝土 偏心 受压 构件 极限 荷载 计算方法 | ||
技术领域
本发明涉及一种偏压构件极限荷载的计算方法,具体涉及一种活性粉末混凝土大偏心受压构件极限荷载的计算方法。
背景技术
活性粉末混凝土(Reactive Powder Concrete,简称RPC)是20世纪90年代初由法国开发出的一种超高强度、高韧性、高耐久性、体积稳定性良好的新型水泥基复合材料,由于其组分中粉末含量及活性的增加而被称为活性粉末混凝土,这在参考文献[1]中提及。自RPC问世以来,国内外许多学者针对RPC的材料、配合比、耐久性、强度以及微细观结构等进行了大量的理论和试验研究,其中具有代表性的公开文献资料为参考文献[2],而实际操作中,通过配合比及原材料的变化,也制备了具有不同力学性能的活性粉末混凝土,在参考文献[3]中有提及。同时,由于活性粉末混凝土具有良好的力学性能和优异的耐久性,目前已在道路,桥梁,结构等工程中得到了较多的应用,具体的应用例子在参考文献[4]中有描述。并有很多学者对活性粉末混凝土受弯构件(包括简支梁和连续梁等)的极限承载力以及抗裂性能进行了试验研究,相关研究结果可参见参考文献[5],在此基础上提出了活性粉末混凝土梁极限荷载的计算模型和计算方法。
但是目前国内外针对RPC偏压构件的研究还很少,仅有极少的文献针对其承载特性进行了试验研究,包括有参考文献[6]-[8]。对于具体的RPC大偏心受压构件极限荷载的计算,仅在参考文献[8]中提及,但其承载力计算完全参照既有一般钢筋混凝土偏心受压构件进行,完全没有考虑活性粉末混凝土抗拉强度对其极限承载力的影响,使得其计算结果和实际结果偏差较大。实际上活性粉末混凝土的抗拉强度较一般混凝土要高得多,必须考虑活性粉末混凝土的抗拉强度才能对其极限承载力进行准确计算。
目前我国正在进行大规模的城市地铁等地下工程的建设,隧道衬砌结构一般处于偏心受压状态,其承载特性和一般的梁结构明显不同。因此,为拓展新型RPC材料在地下工程中的应用,建立一种可靠的活性粉末混凝土大偏心受压构件极限荷载的计算方法已为急需。
以下为本文中所提及的参考文献[1]-[8]及相关出处:
[1]Richard P,Cheyrezy M.Composition of reactive powder concretes.Cement and Concrete Research,1995,25:1501–11.
[2]谢友均,刘宝举,龙广成.掺超细粉煤灰活性粉末混凝土的研究[J].建筑材料学报,2001,4(3):280-284.
[3]HüseyinSerdar Aydln,Halit Yazlcl.Mechanical performance of low cement reactive powder concrete(LCRPC).Composites,Part B,2012,43:2907–2914
[4]周文元.活性粉末混凝土在道路桥梁工程中的应用[J].水运工程,2004,(12):103-105.
[5]万见明,高日.活性粉末混凝土梁正截面抗裂计算方法[J].建筑结构,2007,37(12):93-96.
[6]Adnan R.Malik,Stephen J.Foster.Behaviour of Reactive Powder Concrete Columns without Steel Ties.Journal of Advanced Concrete Technology,2008,6(2):377-386
[7]刘畅.活肚粉末混凝土偏心受压构件破坏机理的试验研究[D].北京:北京交通大学,2012
[8]康佩.活性粉末混凝土构件在受弯、受剪、受压状态下的设计计算方法[D].北京:北京交通大学,2012
发明内容
为了提供一种较为准确的活性粉末混凝土大偏心受压构件极限荷载的计算方法,本发明的技术方案是:
一种活性粉末混凝土大偏心受压构件极限荷载的计算方法,根据活性粉末混凝土大偏心受压构件整个截面的实际受力状态将截面分为受压区和受拉区,将开裂后受拉区的应力等效为从中性轴开始到受拉区边缘处应力为0的三角形分布,受拉区等效三角形应力图系数k根据构件试验结果确定,构件受压区的应力分布等效为矩形应力分布,受压区等效矩形应力图系数根据受压区合力大小和作用点不变的原则确定,然后根据受压区和受拉区力和力矩平衡的原则来计算极限荷载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410298879.2/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用