[发明专利]基于FOA-GRNN的水电站厂坝结构振动响应预测方法在审
申请号: | 201410165840.3 | 申请日: | 2014-04-23 |
公开(公告)号: | CN103942625A | 公开(公告)日: | 2014-07-23 |
发明(设计)人: | 徐国宾;韩文文;张军 | 申请(专利权)人: | 天津大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 李丽萍 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 foa grnn 水电站 结构 振动 响应 预测 方法 | ||
技术领域
本发明涉及一种水电站厂坝结构振动响应预测方法,尤其涉及一种基于FOA-GRNN的水电站厂坝结构振动响应预测方法。
背景技术
水电站机组运行和泄流诱发的厂坝振动是复杂的耦合振动,其振动机理一直是国内外工程界和学术界研究的热点和难点。考虑到厂房结构振动对仪器设备、工作人员健康以及建筑物运行稳定性和安全可靠性的影响,利用较少的监测数据达到全面掌握和控制水电站振动的目的成为关键。用传统的力学方法预测厂房结构振动响应较为困难。况且由于多种振源的共同作用,加之各类振源的作用方式以及产生机理各自不同,其大小亦难以确定,使得水电站厂房振动模型构成更加的复杂。无法轻易和精确的建立各振源与厂房结构振动响应之间的关系。
发明内容
本发明的目的是寻求某种方法利用有限的监测数据,来全面掌握和控制水电站厂房结构振动状况。所述预测方法结合机组振动是引起厂顶溢流式厂房结构振动的主要因素这一理论,根据厂房结构和机组振动之间存在耦合和非线性相关关系,依据某灯泡贯流式机组—厂顶溢流式水电站的厂房结构和机组原型观测数据,应用果蝇优化算法,以均方根误差计算公式作为味道判定函数对广义回归神经网络平滑参数值进行优化。
本发明是通过下述技术方案实现的:运用果蝇算法对广义回归神经网络的平滑参数进行优化选择,构建基于果蝇算法和广义回归神经网络(FOA-GRNN)的水电站厂坝结构振动响应预测方法,运用此方法对水电站厂坝结构振动响应进行预测。
本发明基于FOA-GRNN的水电站厂坝结构振动响应预测方法,该方法包括以下步骤:
步骤1、参数设置:随机产生各粒子的初始位置与初始速度,限定任意时刻粒子的速度和位置的取值范围,设定迭代终止条件,设置学习因子、惯性权重、粒子总个数;
步骤2、样本选择:以水电站厂坝结构实测数据为依托,选择其中易测试部位或已知工况机组振动响应作为输入数据,将其中难测试部位或未知工况厂房结构振动响应作为输出结果;把所有的样本数据进行归一化处理后随机分为测试组数据和训练组数据;
步骤3、选取训练组数据,以广义回归神经网络的平滑参数作为待优化参数,并以预测误差的均方值作为适应度值,确定评价此优化参数的适应度函数值;
步骤4、运用果蝇算法优化步骤3中需要优化的参数,包括:
步骤a、随机设置果蝇个体飞行方向与距离;
步骤b、求出果蝇个体与原点间距离Di2=Xi2+Yi2和味道浓度判定值S=1/Di;
步骤c、广义回归神经网络预测模型的均方根误差作为味道浓度函数,即适应度函数,将步骤b得出的味道浓度判定值S代入适应度函数,以求出该果蝇个体位置的味道浓度值;
步骤d、根据步骤b得出的味道浓度值寻找极值:比较果蝇每代的味道浓度值,迭代保留最佳值位置与味道浓度,并且记录每代最优值;
步骤e、果蝇迭代寻优并判断味道浓度是否优于前一迭代味道浓度;
步骤f、判断是否达到迭代终止条件,即是否达到最大迭代步数或满足收敛精度要求,若是,选择最优的果蝇,得出最优平滑参数,构建最优的广义回归神经网络模型,顺序执行步骤5;否则返回步骤a;
步骤5、利用步骤4得到的模型对水电站厂坝结构振动响应进行预测,即运用未参加模型训练的数据对步骤4建立好的模型进行测试,测试输出的结果便是水电站厂坝结构难测试部位或未知工况厂房结构的振动响应。
为了验证本发明方法获得的模型与现有技术相比所具有的优势,通过将本发明预测方法中所建立的模型与其他预测模型展开对比研究,从而作为评价本发明预测方法测试结果的依据。与现有技术相比,本发明的有益效果是:本发明提出的基于果蝇算法优化的广义回归神经网络的水电站厂坝结构振动响应预测方法,利用果蝇算法对GRNN关键参数进行寻优,充分利用果蝇算法收敛速度快及径向基函数调整参数少的优点,并依据实测数据建立预测模型。最终得出该预测方法的特点如下:
(1)泛化能力强。该模型通过MATLAB仿真,获得了良好的预测效果,与反向传播神经网络(英文缩写为BP)、局部回归神经网络(英文缩写为ELMAN)相比,本发明的预测值与真实值的相对误差和均方误差均非常小,有更高的预测精度。
(2)拟合能力强。同样,运用已经建立好的模型对参与训练的数据进行预测,得出的结果可以说明已建模型与实际情况的相似程度很高,拟合效果很好。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410165840.3/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理