[发明专利]基于核密度估计和K-L散度的旋转机械故障诊断方法有效

专利信息
申请号: 201410100359.6 申请日: 2014-03-18
公开(公告)号: CN103868692A 公开(公告)日: 2014-06-18
发明(设计)人: 刘宇;张凡;陈初杰;李彦锋;杨圆鉴;米金华;黄洪钟 申请(专利权)人: 电子科技大学
主分类号: G01M13/04 分类号: G01M13/04;G01M13/02
代理公司: 成都宏顺专利代理事务所(普通合伙) 51227 代理人: 周永宏
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 密度 估计 旋转 机械 故障诊断 方法
【说明书】:

技术领域

发明属于机械装备故障智能诊断领域,具体涉及基于核密度估计和K-L散度等统计学工具的故障诊断方法。 

背景技术

旋转机械广泛应用于工业生产实践中,例如风力发电机、数控机床、航空航天发动机等关系到国防民生的重要领域。在生产工作中,滚动轴承、齿轮等旋转机械中的关键部件由于需要承受交变机械应力和偶然冲击,加上本身固有的制造误差,经常会产生一些早期缺陷,例如轻度磨损、点蚀等。这些缺陷如果不及时诊断发现,就会不断恶化,最终导致系统失效,带来很大的财产损失,甚至对国防和人身安全带来巨大威胁。对于现代化大型复杂旋转机械设备而言,尽管可以通过改善设计、制造工艺来提高零部件的质量,但仍难以确保不出故障。所以,有必要利用先进的传感和监测技术,对关键零部件及系统进行有计划、有组织、有针对性的状态监测和故障诊断,尽早发现设备运行过程中的各种隐患,从而防止巨额财产损失和灾难性事故的发生。 

数据驱动方法是近年来逐渐兴起的一种故障诊断技术,计算机技术的快速发展使得大数据并行高速计算变得非常容易,推动了依靠大量数据分析的故障诊断技术的发展。从应用的角度看,基于数据驱动的故障诊断方法较基于模型的方法更为切实可行,这是由于数据采集通常要比精确建立物理模型更加容易。除此之外,数据驱动的故障诊断方法还有两个明显的优点:一是该类方法更容易实现自动诊断,这与现代工业的智能化发展是切合的;二是该类方法不需要太多参数设置和专家经验知识。一般来说,一种数据驱动的故障诊断方法应包括数据获取、特征提取、特征降维、分类器设计和结果输出等五个步骤,其中分类器设计和选择是该类方法的关键。 

现有的数据驱动的故障诊断方法大多都是在样本的特征空间寻找一个最优分类超曲面,从而将不同类型的故障样本分开。例如,基于支持向量机(Support Vector Machine,SVM)的故障诊断方法,基于BP(Back Propagation)神经网络的故障诊断方法等。然而,由于噪声、测量误差等对有效振动信号的污染,使得分类问题存在一定的不确定性,进而导致了分类错误的现象,即很难找到一个恰当的超曲面将所有样本全部归类正确。 

以上常用方法产生分类错误的现象的原因与它们的分类原理是分不开的。传统的智能故障诊断方法往往忽略了样本间的统计信息和关联信息,而统计信息对于随机信号处理是极为关键的,即对于正确分类很有帮助。目前,国内外从样本统计角度开展的智能故障诊断方法的研究或报道还非常少。 

发明内容

本发明的目的是为了从原始样本中提取更加全面、有效的统计学信息,从而提高分类器的准确率和推广能力,提出一种基于核密度估计(Kernel Density Estimation,KDE)和K-L散度(Kullback-Leibler Divergence)两种统计学工具的智能故障诊断方法。 

本发明的基于核密度估计和K-L散度的旋转机械故障诊断方法,包括如下步骤: 

步骤1:采集被监测对象的原始振动数据,并划定训练样本集和测试样本集; 

步骤2:从步骤1中得到的原始振动数据中提取指定时频域特征; 

步骤3:从步骤2中得到的频域特征集中选择出少数敏感特征,并且计算这些敏感特征的分类贡献率; 

步骤4:利用核密度估计计算训练样本中不同故障类别样本集关于步骤3中提取的敏感特征的概率密度函数,并计算加入一个未知故障类别待测样本后各类样本集新的概率密度函数; 

步骤5:计算出在选定的特征描述下,训练样本中各类故障样本集原始概率密度函数,以及加入一个待测样本后的新概率密度函数两者的K-L散度值; 

步骤6:计算集成K-L散度,并通过集成K-L散度的大小判断待测样本的故障类别。 

进一步地,所述步骤2中得到的指定时频域特征是通过总体平均经验模态分解方法和希尔伯特变换等信号处理方法得到的。 

进一步地,所述步骤3的计算过程如下: 

第一步:计算第j个特征C个类的类内距离的平均值

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410100359.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top