[发明专利]核壳结构铜纳米微粒及其制备方法有效
申请号: | 201410096234.0 | 申请日: | 2014-03-14 |
公开(公告)号: | CN103862039A | 公开(公告)日: | 2014-06-18 |
发明(设计)人: | 孙蓉;李刚;于淑会 | 申请(专利权)人: | 中国科学院深圳先进技术研究院 |
主分类号: | B22F1/02 | 分类号: | B22F1/02;B22F9/24;B22F9/16 |
代理公司: | 广州华进联合专利商标代理有限公司 44224 | 代理人: | 吴平 |
地址: | 518055 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 结构 纳米 微粒 及其 制备 方法 | ||
技术领域
本发明涉及纳米材料技术领域,特别是涉及一种核壳结构铜纳米微粒及其制备方法。
背景技术
随着集成电路特征尺寸进入纳米量级,集成电路产品的封装形式也从二维过渡到了三维,向着更高密度的方向发展。为了满足现代封装技术对封装材料提出的要求,将纳米材料应用于电子封装领域已经成为必然趋势,而金属基纳米复合材料以其高的热电物理性能和良好的封装性能得到了人们越来越多的关注。
目前,纳米金属颗粒在电子封装领域中的应用主要有以下几个方面:(1)导电金属颗粒用于提高复合材料的介电常数。目前用于埋入式电容器的聚合物基复合材料很难通过继续增加钛酸钡组分的含量进一步提高复合材料的介电常数。基于渗流理论,将导电颗粒添加到聚合物基体中,当导电颗粒的体积比达到渗流阈值时,复合材料可以达到异常高的介电常数。然而,渗流体系存在的重大缺陷是在渗流阈值附近,介电常数提高的同时伴随着介电损耗的增加。而制备核壳结构的导电金属粒子和绝缘层的复合微粒,为解决提高介电常数与降低介电损耗的矛盾提供了一条有效的途径。(2)导电颗粒用于制备导电胶。在微电子组装中,导电胶逐渐代替传统的锡铅焊料。导电胶由导电填料、聚合物粘料和其他助剂组成,其中导电填料是导电胶的关键组分。目前应用较广的导电胶填料是银粉,但是银迁移的问题是导电银浆在电子产品使用中的一大缺陷,因此寻找性能优良的新型导电粉体,以贱金属代替贵金属开发制备电子浆料已成为发展的趋势。(3)用于热界面材料。为了满足电子技术集成度和功率密度进一步提高对散热提出的要求,利用新的理念和技术将具有高导热能力的金属应用于热界面材料是提高器件散热效率的一个重要方向。金属纳米颗粒优良的导电导热性能,使其在电子封装领域有着广泛的应用前景,但金属纳米材料通常具有大的比表面积和比表面能,在空气中很快就形成氧化膜,进而影响其导电导热性能。因而,制备具有良好抗氧化稳定性的金属纳米材料是其在电子封装领域得以应用的重要前提。
目前在电子封装领域,利用纳米金属颗粒作为新型功能填料的研究主要集中在具有良好导电性能和化学稳定性的Ag导电颗粒方面。然而Ag价格昂贵,不适宜大规模地工业化生产,而金属Cu以其良好的导电导热性能和较低的成本有望成为银的代替者,然而纳米铜颗粒易氧化的缺陷极大地限制了其应用。因此开发能够规模化生产、具有良好抗氧化性的金属铜颗粒材料对于其在电子封装领域中的应用具有重要的意义。
发明内容
基于此,有必要提供一种具有良好抗氧化性的核壳结构铜纳米微粒。
进一步,提供一种核壳结构铜纳米微粒的制备方法。
一种核壳结构铜纳米微粒,包括铜内核和包覆于所述铜内核表面的二氧化硅外壳,所述铜内核的粒径为40纳米~450纳米,所述二氧化硅外壳的厚度为5纳米~50纳米。
一种核壳结构铜纳米微粒的制备方法,包括如下步骤:
制备含有铜前驱体和保护剂的碱性溶液,加入还原剂得到第一混合物,将所述第一混合物于10℃~80℃下反应5分钟~60分钟,得到纳米铜水溶胶,将所述纳米铜水溶胶进行分离纯化,得到铜纳米粉体;及
将所述铜纳米粉体分散于含有氨水的乙醇溶液中,加入含有硅前驱体的乙醇溶液得到第二混合物,将所述第二混合物于10℃~80℃下反应0.5小时~12小时,分离纯化,得到所述核壳结构铜纳米微粒,所述核壳结构铜纳米微粒包括铜内核和包覆于所述铜内核表面的二氧化硅外壳,所述铜内核的粒径为40纳米~450纳米,所述二氧化硅外壳的厚度为5纳米~50纳米。
在其中一个实施例中,所述铜前驱体选自硫酸铜、氯化铜、硝酸铜、醋酸铜及氢氧化铜中的至少一种。
在其中一个实施例中,所述保护剂选自聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、十二烷基苯磺酸钠、聚乙烯醇及聚乙二醇中的至少一种。
在其中一个实施例中,所述还原剂选自甲醛、硼氢化钠、次磷酸钠、水合肼及抗坏血酸中的至少一种。
在其中一个实施例中,所述制备含有铜前驱体和保护剂的碱性溶液的操作具体为:将铜前驱体和保护剂溶于水中,加入碱性物质,得到所述含有铜前驱体和保护剂的碱性溶液。
在其中一个实施例中,所述碱性物质选自氢氧化钠、尿素、氨水、乙二胺、二乙胺及三乙醇胺中的至少一种。
在其中一个实施例中,所述硅前驱体选自硅酸钠、正硅酸四乙酯、γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷及γ-巯丙基三乙氧基硅烷中的至少一种。
在其中一个实施例中,所述铜前驱体、还原剂和硅前驱体的摩尔比为1:0.1~10:0.05~1。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院深圳先进技术研究院,未经中国科学院深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410096234.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种可监控的缓冲双级路灯
- 下一篇:一种散热加固监控路灯