[发明专利]一种基于用户行为的信息推荐方法无效

专利信息
申请号: 201310747338.9 申请日: 2013-12-31
公开(公告)号: CN103678710A 公开(公告)日: 2014-03-26
发明(设计)人: 蒋昌俊;陈闳中;闫春钢;丁志军;王鹏伟;何源;陈雨忱 申请(专利权)人: 同济大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 上海天协和诚知识产权代理事务所 31216 代理人: 叶凤
地址: 200092 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 用户 行为 信息 推荐 方法
【权利要求书】:

1.一种基于用户行为的信息推荐方法,其特征在于,方法步骤为:

步骤(1)数据来源,具体为:

通过网络爬虫爬取了网络上的网页信息,并使用最大块密度算法抽取了网页中的正文,使用IKAnalyzer进行分词,使用聚类算法将词进行聚类,最终通过形成了多个类,同时在每个类中都有一个中心词用于较好地刻画这个类,如此网络中的海量词语就形成了一个索引网;

步骤(2)用户行为处理,具体为:

当用户使用搜索引擎进行搜索时,系统会自动为该用户分配一个唯一的用户号;当用户登录后,系统会自动把用户的搜索内容和与搜索结果的交互情况记录下来,并存入数据库中;所述数据库使用了一维向量来刻画用户的搜索行为;当用户登录系统之后,输入关键字进行搜索,那么就使用向量<ID,word,num,class>(ID表示用户ID,word表示关键词,num表示搜索该关键词的次数,class表示该关键词所属的类)来记录用户的搜索行为;当呈现了搜索结果之后,如果用户点击了相应的搜索内容,则同样记录用户点击行为,即使用向量<ID, class, count>(ID表示用户ID,class表示点击内容所属的类,count表示点击该类的次数)来表示;

步骤(3)进行推荐,具体为:

推荐算法是以现有数据为基础,采用基于内容推荐的算法为用户进行推荐。

2.在每个搜索结果的呈现中都会展示这个结果属于哪个类,那么就可以在此基础上推荐这个类中的相应内容和与这个类有关的类;在已构建的词关联网上,根据用户行为建立的数据表,按照某个类中num(用户点击次数)的大小选取前K个进行推荐;而类之间的推荐则根据count(这个类被某个用户所选择的次数)的大小取前M个进行推荐。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310747338.9/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top