[发明专利]一种单分子磁体[Dy2(saph)2Cl2]·4CH3OH的制备方法有效
申请号: | 201310731409.6 | 申请日: | 2013-12-26 |
公开(公告)号: | CN103641850A | 公开(公告)日: | 2014-03-19 |
发明(设计)人: | 高婷;孙鸥;闫鹏飞;李光明 | 申请(专利权)人: | 黑龙江大学 |
主分类号: | C07F5/00 | 分类号: | C07F5/00;H01F1/42;H01F41/02 |
代理公司: | 哈尔滨市松花江专利商标事务所 23109 | 代理人: | 牟永林 |
地址: | 150080 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 分子 磁体 dy sub saph cl ch oh 制备 方法 | ||
技术领域
本发明涉及一种单分子磁体[Dy2(saph)2Cl2]·4CH3OH的制备方法。
背景技术
单分子磁体是指那些在磁场下能够被磁化,当磁场去除后仍能保持磁性的单分子,其磁化强度对外磁场的曲线会出现磁滞回线。单分子磁体的磁性完全来源于单个分子的本身,而不像常规磁体那样依赖于分子间排列的长程有序和互相作用。Wickman等人在1967年的时候发表过一篇关于铁配合物的分子基的磁体,在2.46K时结晶状态中呈现铁磁有序。而在1993年,GatteschiD等发现了首例单分子磁体Mn12簇合物,开辟了一个新的磁学领域。而在过去的十年里,科学家们不满足于仅由过渡金属形成的单分子磁体了,关注热点也逐渐由单一的过渡金属单分子磁体转移到过渡-稀土金属的单分子磁体,在2004年,Matsumoto研究小组报道了首个3d-4f单分子磁体Cu-Dy异核金属簇合物,进而开创了3d-4f单分子磁体的研究领域。然而,这些单分子磁体呈现磁弛豫效应的温度(阻塞温度TB)普遍较低,这使其应用受到很大限制。于是研究者们期望通过合成其他类型单分子磁体来提高阻塞温度,因此,稀土元素单电子数多、各向异性显著,具有强旋轨耦合作用,是设计单分子磁体的理想选择。而所有的稀土金属当中,Dy(III)则由于其很高的力矩和高的配位环境而成为了稀土金属中形成单分子磁体最重要的元素,金属簇合物单分子磁体在众多领域中的应用引起广泛关注,而稀土簇合物单分子磁体还少见报道。此外席夫碱类稀土金属合成方法复杂、产率较低,一般产率为20%~30%,这些成为该领域面临最大挑战。
发明内容
本发明要解决目前的稀土簇合物单分子磁体合成方法产率较低,配合物的合成方法复杂,不能够批量生产的问题,而提供的一种单分子磁体[Dy2(saph)2Cl2]·4CH3OH的制备方法。
本发明一种单分子磁体[Dy2(saph)2Cl2]·4CH3OH的制备方法,是按照以下步骤制备的:
一、将邻氨基酚缩水杨醛溶解于乙腈中,得到溶液A;将氯化镝溶于甲醇中,得到溶液B;然后将溶液A和溶液B混合,再加入浓度为0.001mol/L的三乙胺,得到混合溶液;其中邻氨基酚缩水杨醛、氯化镝和三乙胺的物质的量之比为1∶1∶1,甲醇与乙腈的体积比为1∶3;其中溶液A中邻氨基酚缩水杨醛与乙腈的比例为(0.0211~0.0214)g:1mL,溶液B中氯化镝与甲醇的比例为(0.0125~0.0126)g:1mL;
二、将步骤一得到的混合溶液进行室温搅拌,得到预制体;
三、将步骤二得到的预制体中溶剂挥发,得到单分子磁体[Dy2(saph)2Cl2]·4CH3OH,完成单分子磁体[Dy2(saph)2Cl2]·4CH3OH的制备方法。
本发明制备的[Dy2(saph)2Cl2]·4CH3OH为具有良好铁磁性的单分子磁体,并且本发明制备方法的产率高,达到45.76%以上,单分子磁体的合成方法简单,重复性强。
附图说明
图1为试验1制备的单分子磁体[Dy2(saph)2Cl2]·4CH3OH的分子结构图;
图2为试验1制备的单分子磁体[Dy2(saph)2Cl2]·4CH3OH的红外谱图,其中曲线1代表saph的曲线,曲线2代表单分子磁体[Dy2(saph)2Cl2]·4CH3OH的曲线;
图3为试验1制备的单分子磁体[Dy2(saph)2Cl2]·4CH3OH的直流磁化率图;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于黑龙江大学,未经黑龙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310731409.6/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法