[发明专利]移动机器人的多脉冲神经网络控制器导航控制方法有效

专利信息
申请号: 201310716892.0 申请日: 2013-12-23
公开(公告)号: CN103984342A 公开(公告)日: 2014-08-13
发明(设计)人: 王秀青;侯增广;谭民;潘世英 申请(专利权)人: 王秀青
主分类号: G05D1/02 分类号: G05D1/02
代理公司: 石家庄冀科专利商标事务所有限公司 13108 代理人: 陈长庚
地址: 050000 河北省石家庄市*** 国省代码: 河北;13
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 移动 机器人 脉冲 神经网络 控制器 导航 控制 方法
【说明书】:

技术领域

发明涉及一种基于多个脉冲神经网络控制器的移动机器人的导航控制方法,属于移动机器人目标点趋近自主导航控制器技术领域。 

背景技术

移动机器人是机器人学中的一个重要分支,它是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合智能控制系统,主要应用于军事和民用两大领域。服务机器人是机器人研究领域的一个重要分支,在服务机器人中以移动机器人为多。移动机器人发展趋势之一是逐步向智能化方向发展。神经网络、模糊理论、遗传算法等智能计算方法为移动机器人的智能化起到了推进的作用。 

移动机器人要完成给定任务, 需要进行自主导航。自主导航是移动机器人中所要解决的重要关键问题之一。移动机器人的给定任务多以目标点趋近子任务为基础,因而目标点趋近导航是常见的移动机器人导航任务之一。在具有各种不确定信息的未知的非结构化环境中,移动机器人只有实现自主地通过感知和推理实现无碰撞趋向目标位置的智能行为,才能顺利地完成给定任务。对于移动机器人的导航控制问题,传统控制方法通过借助所建立的精确数学模型来分析解决,所设计的导航控制器大多工作在结构化的环境中,完成的任务也多为简单的重复性强的沿规划路径行走的运动。但对于在未知、非结构化环境中执行复杂任务的移动机器人,要想得到环境的精确数学模型是非常困难的。而神经网络应用的特点是不需要建立精确的对象模型,利用神经网络特定的拓扑结构,网络联结突触的权值设定,对应的神经网络学习算法,即可解决很多非线性的实际问题。 

目前被称为第三代神经网络的脉冲神经网络与前两代神经网络相比,脉冲神经网络具有下述优点: 

(1)脉冲神经元中融入了时间和空间信息,因而脉冲神经网络更适用于实际的动态环境中。

(2) 在前两代传统的神经网络中传递的是模拟信号,而脉冲神经元是通过脉冲时间序列传送和接收信息,这就使得脉冲神经网络较那些经典的神经网络具有更强的鲁棒性。 

(3) 脉冲神经网络易于用硬件实现。由于脉冲神经元模型可通过硬件电路模拟,因而脉冲神经网络功能也易于借助神经微电路来实现。 

(4) 脉冲神经网络具有很强的计算能力。它能够以更少的神经元实现第二代神经网络逼近的任何连续函数,因而同样功能的基于脉冲神经网络的神经芯片相对于基于第二代神经网络的神经芯片具有更小的体积和更低的功耗。 

由于在移动机器人控制器的设计中同时需要融入时空信息, 而同时融入时空信息正是脉冲神经网络较传统的神经网络相比独具的特点,此外脉冲神经网络计算速度快、易于用硬件实现,所以脉冲神经网络更适于移动机器人控制器的设计。 

发明内容

本发明所要解决的技术问题是提供一种移动机器人的多脉冲神经网络控制器导航控制方法,这种方法基于距离传感信息融合及多个脉冲神经网络控制器,使得移动机器人在未知、非结构环境中能够利用脉冲神经网络避障行为控制器、脉冲神经网络沿墙行走控制器进行自主避障、自主沿墙行走,配合目标点趋近模块,从而完成移动机器人在未知环境中的目标点趋近导航任务。 

解决上述技术问题的技术方法是: 

一种移动机器人的多脉冲神经网络控制器导航控制方法,它包括目标点趋近控制器、沿墙行走控制器、避障行为控制器,沿墙行走控制器和避障行为控制器中采用了脉冲神经网络,在神经网络中同时融入时空信息,导航控制方法包括以下步骤:

步骤A:初始化各控制器,及相关阈值参数: 为判断周边障碍物考虑与否的阈值,为机器人中心距目标点的距离,为机器人是否到达目标点阈值,当机器人中心距目标点的距离机器人到达目标点阈值,即,认为机器人到达目标点,为移动机器人运动方向是否偏离给定方向阈值;

步骤B:计算 为移动机器人当前运动方向和机器人中心点(xr; yr)与目标点(xt; yt)连线之间的夹角,  为移动机器人中心点(x,y)与目标点(xt; yt)连线与笛卡儿坐标系中横坐标轴正向之间的夹角, 为移动机器人位姿角;

的计算如下(1)(2)式所示:

步骤C:采集距离传感器测量信息;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于王秀青,未经王秀青许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310716892.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top