[发明专利]具有强吸收结构的高速SNSPD及其制备方法有效
申请号: | 201310596327.5 | 申请日: | 2012-09-10 |
公开(公告)号: | CN103579405A | 公开(公告)日: | 2014-02-12 |
发明(设计)人: | 成日盛;刘建设;李铁夫;陈炜 | 申请(专利权)人: | 清华大学 |
主分类号: | H01L31/08 | 分类号: | H01L31/08;H01L31/0352;H01L31/18;G01J1/42 |
代理公司: | 西安智大知识产权代理事务所 61215 | 代理人: | 贾玉健 |
地址: | 100084 北京市海淀区1*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 具有 吸收 结构 高速 snspd 及其 制备 方法 | ||
技术领域
本发明属于单光子探测领域,适用于在近红外波段实现超快速以及高效率的单光子探测,涉及一种具有强吸收结构的高速SNSPD及其制备方法。
背景技术
近年来,G.N.Gol’tsman et al.,“Picosecond superconducting single-photon optical detector,”Applied Physics Letter,vol.79,pp.705–707,2001.记载的超导纳米线单光子探测器(SNSPD),由于其在可见光和红外波段优异的单光子探测能力、超高计数率、低的暗计数、很小的时间抖动越来越受到人们广泛的关注,尤其是其在近红外波段能实现的量子效率和最高计数率均已超过已有的基于复合半导体材料的雪崩光电二极管,使得其已经成为量子通讯和远程光通信等领域最有力的候选探测器。目前,由最常用的氮化铌(NbN)超导材料做成的SNSPD的本征量子效率可以达到90%以上,但它有限的光吸收率成了限制SNSPD总系统量子效率的一个瓶颈。由于SNSPD的核心感光区域是由超薄的纳米线构成的,所以它对入射光子的吸收率非常有限,光子会以相当一部分的概率从纳米线之间的间隙穿过,或者直接穿过薄膜,又或者从超导薄膜反射回去。K.M.Rosfjord et al.,“Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,”Optics Express,vol.14,pp.527–534,2006.记载着给SNSPD增加光学谐振腔结构来显著提高其光子吸收率的方法。但对于比较典型的4nm厚、50%占空比的NbN纳米线来说,用这种方法只能得到70%左右的吸收率。如果要进一步提高吸收率,则需要增加纳米线的占空比或者厚度,但前者在样品制备上提出了更苛刻的要求,而后者会导致探测器本征量子效率的下降。US2012/0077680A1“Nanowire-based detector”K.K.Berggren,X.Hu,D.Masciarelli等人提出的基于纳米天线增加吸收率的方法可以在4nm厚、50%占空比NbN纳米线的条件下,可以实现接近于100%的吸收率,但这种方案同样在样品制备上提出了比较高的要求,最终实验结果表明其成品率并不高。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供一种具有强吸收结构的高速SNSPD及其制备方法,可在低占空比的条件下实现高吸收率,具有结构简单、工艺可控的特点。
为了实现上述目的,本发明采用的技术方案分别是:
一种具有强吸收结构的高速SNSPD,包括金属薄膜反射镜8,金属薄膜反射镜8下方有透明介质材料构成的上层谐振腔9,上层谐振腔9下方为超导纳米线二10,超导纳米线二10下方为外延单晶Si层11,外延单晶Si层11下方为Si衬底二12,Si衬底二12朝向外延单晶Si层11开有底层谐振腔二13,Si衬底二12下方有防反射膜二14。
所述透明介质材料为SiO2,上层谐振腔9厚度需要事先通过仿真来优化,优化值为入射光在该介质内等效波长的四分之一左右,但会根据超导纳米线的材料、厚度及占空比不同有稍微的差异。
所述金属薄膜反射镜8由60nm以上厚度的Au膜构成,与构成上层谐振腔9的介质材料之间有1-2nm厚度的Ti作为粘附层。
所述底层谐振腔二13由外延单晶Si层11和空气层构成,空气层的厚度为入射光波长的四分之一,外延单晶Si层11的厚度需要事先通过仿真来优化,优化值为入射光波长的二分之一左右,但会根据超导纳米线的材料、厚度及占空比不同有稍微的差异。
制备上述高速SNSPD的方法,包括如下步骤:
(a)准备一个双面抛光的Si片,在其中一面刻出凹槽;
(b)准备SOI衬底,事先通过仿真得到所需要的外延单晶Si层的精确厚度,机械减薄背面的Si层,用Si-Si键合的方法,把SOI衬底和上述带有凹槽的Si片键合在一起;
(c)用KOH腐蚀液腐蚀SOI衬底的背Si层,再用氢氟酸缓冲腐蚀液去掉SiO2埋层,露出单晶Si层;
(d)在单晶Si层上溅射生长超导薄膜,并用电子束曝光以及反应离子刻蚀形成超导纳米线;衬底的另一面用制备Al2O3薄膜作为防反射膜;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310596327.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:用于股骨颈骨折的伸缩式螺钉
- 下一篇:一种对讲机信息维护方法
- 同类专利
- 专利分类
H01L 半导体器件;其他类目中不包括的电固体器件
H01L31-00 对红外辐射、光、较短波长的电磁辐射,或微粒辐射敏感的,并且专门适用于把这样的辐射能转换为电能的,或者专门适用于通过这样的辐射进行电能控制的半导体器件;专门适用于制造或处理这些半导体器件或其部件的方法或
H01L31-02 .零部件
H01L31-0248 .以其半导体本体为特征的
H01L31-04 .用作转换器件的
H01L31-08 .其中的辐射控制通过该器件的电流的,例如光敏电阻器
H01L31-12 .与如在一个共用衬底内或其上形成的,一个或多个电光源,如场致发光光源在结构上相连的,并与其电光源在电气上或光学上相耦合的