[发明专利]一种基于视觉皮层的夜视图像凸显轮廓提取方法有效
申请号: | 201310476368.0 | 申请日: | 2013-10-12 |
公开(公告)号: | CN103544683A | 公开(公告)日: | 2014-01-29 |
发明(设计)人: | 柏连发;张毅;祁伟;韩静;岳江;陈钱;顾国华 | 申请(专利权)人: | 南京理工大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00;G06T7/00 |
代理公司: | 南京理工大学专利中心 32203 | 代理人: | 朱显国 |
地址: | 210094 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 视觉 皮层 视图 凸显 轮廓 提取 方法 | ||
技术领域
本发明属于夜视图像理解领域,具体涉及一种基于视觉皮层的夜视图像凸显轮廓提取方法。
背景技术
凸显轮廓提取在夜视图像(包括微光、红外图像)理解分析方面发挥着重要作用,在机器视觉应用中起着重要的作用,同时凸显轮廓也在夜视图像特征提取过程中发挥重要的作用。文献一(桑农,唐奇伶,张天序.基于初级视皮层抑制的轮廓检测方法[J].红外与毫米波学报,2007,(1))等人采用蝶形抑制模型,有效地避免轮廓上的相互抑制,但是对夜视图像并没有有效地抑制,周边噪声依然存在,轮廓淹没在噪声中、不显著。文献二(杜晓凤,李翠华,李晶.基于复合感受野的轮廓检测算法[J].电子与信息学报,2009,(7))采用复合的感受野模型,可以有效地抑制纹理边缘,减少轮廓的破坏,但是针对夜视图像的复杂场景,依然存在噪声的影响,凸显轮廓并没有完整地被提取出来。文献三(Tang Q,Sang N,Zhang T.Extraction of salient contours from cluttered scenes[J].Pattern recognition,2007,40(11):3100-3109)对非经典感受野进行改进,并结合格式塔心理原则,可以有效地从复杂场景中检测出显著的边缘轮廓,提高了检测的性能,但针对微光图像噪声严重的情况,轮廓局部不突出、不完整,背景纹理无法抑制,红外图像轮廓模糊,局部对比度不显著。
发明内容
本发明提出一种基于视觉皮层的夜视图像凸显轮廓提取方法,该方法解决了噪声抑制过程中轮廓细节丢失及轮廓不突出、不完整的问题。
为了解决上述技术问题,本发明提出一种基于视觉皮层的夜视图像凸显轮廓提取方法,其特征在于,包括以下步骤:
步骤一:随机选取T幅夜视图像,用大小为m*m的滑动子图像窗口随机采样每一幅图像W次组成一个L维训练数据集,对L维训练数据集进行中心化和白化处理获得预处理图像I,其中,T≥8,m∈[3,9],W∈[1000,20000],L=m2*W;
步骤二:对预处理图像I采用非负稀疏编码算法得到系数矩阵,并将系数矩阵分成Y个子块ΔY,从每一个子块ΔY中提取图像的特征向量并进行最大化池化处理,使用图像的显著边缘轮廓算法检测得到加权后的轮廓图像F,其中,ΔY∈[3*3,9*9],Y∈[2000,10000];
步骤三:对预处理图像I采用贝叶斯概率推理模型估计切线段连接,采用梯度下降法将切线段连接中的中断连接和边角连接统一划分为曲率连接从而得到边缘连接概率,采用拉普拉斯函数模拟每个边缘连接概率的连接假设似然获得稀疏图,采用迪科斯彻算法搜索稀疏图闭合路径,对未连接的路径进行填补得到增强后的闭合显著轮廓图像N;
步骤四:将加权后的轮廓图像F和增强后的闭合显著轮廓图像N合成,采用Canny算法中的非极大值抑制和滞后门限的方法对合成的图像进行阈值处理并去除短小的噪声边缘,获得凸显轮廓图像E。
本发明与现有技术相比,其显著优点在于,本发明方法在非负稀疏编码的基础上结合显著的边缘轮廓信息检测,降低了噪声的干扰;同时本发明方法将感兴趣区域视为贝叶斯概率模型的推理问题,对切线段进行细分,将切线段连接归为低视觉偏好的曲率连接,可以有效地估计切线段连接的概率,从而计算具有很强的封闭边界轮廓,从而有效地增强夜视图像的显著轮廓,从一定程度上保护了轮廓的完整性。
附图说明
图1是本发明方法的流程图。
图2是使用本发明方法实验时,所述步骤二获得的加权后的轮廓图像,其中,图2(a0)、图2(b0)、图2(c0)和图2(d0)为实验用原始图像,图2(a1)、图2(b1)、图2(c1)和图2(d1)分别为图2(a0)、图2(b0)、图2(c0)和图2(d0)对应的加权后的轮廓图像。
图3是梯度下降法示意图。
图4是边角连接细分为曲率连接图。
图5是中断连接细分为曲率连接图。
图6是使用本发明方法实验时,所述步骤三获得的增强后的闭合显著轮廓图像,其中,图6(a2)、图6(b2)、图6(c2)和图6(d2)为实验用原始图像,图6(a3)、图6(b3)、图6(c3)和图6(d3)分别为图6(a2)、图6(b2)、图6(c2)和图6(d2)对应的闭合显著轮廓图像。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310476368.0/2.html,转载请声明来源钻瓜专利网。