[发明专利]一种基于蜂拥控制的移动传感器目标跟踪的方法有效

专利信息
申请号: 201310205840.7 申请日: 2013-05-27
公开(公告)号: CN104185310B 公开(公告)日: 2017-12-05
发明(设计)人: 樊春霞;刘云岫 申请(专利权)人: 南京邮电大学
主分类号: H04W84/18 分类号: H04W84/18
代理公司: 南京正联知识产权代理有限公司32243 代理人: 王素琴
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 蜂拥 控制 移动 传感器 目标 跟踪 方法
【说明书】:

技术领域

发明涉及移动传感器的目标跟踪,具体是移动传感器网络基于蜂拥控制的单目标跟踪。

背景技术

近年来,移动传感器的使用越来越广泛,一般用于人为无法到达的监测的环境,或者超出静态传感器的感知半径,例如:室内危险品跟踪监测,火场监测,野外标本数据监测,化工厂气体监测等。

实现以上所有监测的前提是锁定跟踪目标,以往的移动传感器目标跟踪,需要每个节点获知目标信息(位置,速度等),这样节点的运动控制需要投入很高的成本。从控制的角度来说,能够进行计算的移动传感器实质上是智能体。

经对现有技术文献的检索发现,Saber等人提出了三种蜂拥控制算法,其中之一就是所有智能体获知目标信息时追踪目标的蜂拥控制算法。Saber提出的追踪目标的蜂拥控制算法,控制所有节点,成本最高。将牵制控制的思想引入蜂拥控制取得了一些重要的成果,即对少数节点施加控制以实现群集行为,苏厚胜等人提出少数节点具有虚拟领导者信息的蜂拥控制算法,汪小帆等人进一步基于人工势场法实现多智能体网络的牵制蜂拥同步,但这两种控制方法在跟踪者和目标之间没有引入保护跟踪者的势能函数。涂志亮等人针对移动传感器网络中动态目标的监测优化问题,提出基于蜂拥控制的传感器节点部署分布式控制算法,这种控制方法在实现跟踪者避免碰撞目标时对所有跟踪者都引入人工势能,这种控制成本高于对部分跟踪者引入人工势能。

发明内容

本发明是针对现有技术中同时确保控制少量节点降低成本和引入保护跟踪者的势能函数,提供了可以同时兼顾成本和安全的一种基于蜂拥控制的移动传感器目标跟踪的方法。

为解决上述技术问题,本发明提出了一种基于蜂拥控制的移动传感器目标跟踪的方法,包括以下步骤:

步骤一:建立移动传感器网络MSN(Mobile Sensor Network),所述移动传感器网络是一个由N个相同节点组成的移动传感器网络,并用无向图用来表示;

步骤二:设MSN的运动学方程为:

其中,i=1,2,…,N;xi,vi,ui∈Rn分别是节点i的位置、速度和加速度控制输入,且vi,ui有界;

步骤三:设MSN跟踪目标的运动学方程为:

步骤四:传感器节点的通信半径或观测半径为R,即与所述传感器的距离小于R的目标信息都可以被观测到,传感半径为Rs,采用布尔传感器模型,所述目标信息包括位置、速度和加速度;

步骤五:传感器需要与目标之间设置安全距离,建立势能函数:

则有

步骤六:设计如下ui控制律,对于每个所述节点i:

其中,c1,c2为正值。

进一步的,前述的一种基于蜂拥控制的移动传感器目标跟踪的方法,步骤一中所述无向图由G=(V,E,A)来表示,集合V={1,2,…,N}表示所有传感器节点,边集E={(i,j)|i,j∈V,i≠j}。用A=[aij]∈RN×N表示节点之间的邻接关系,称之为邻接矩阵,其中aij≠0是(i,j)∈E的等价表示,所述节点i和所述节点j之间的距离越近,邻接权值aij就越大,相互的影响也就越大;当距离大于一定值时,相互的影响可以不计。

进一步的,前述的一种基于蜂拥控制的移动传感器目标跟踪的方法,步骤二中所述ui为控制律,在只有本地和单跳邻居节点的信息可用时,得到稳定的网络拓扑结构,协同所有节点速度与目标一致,覆盖目标,并且所有节点与目标保持安全距离。

进一步的,前述的一种基于蜂拥控制的移动传感器目标跟踪的方法,步骤四中所述布尔传感器模型,位于xi处的传感器检测到xT处目标的概率为

所述节点i的单跳邻居集合为Ni={j|‖xi-xj‖≤R},且使用GPS等定位系统的单跳通信使得传感器获知目标信息,若j∈Ni,那么所述节点i可以自身观测获取所述节点j的位置,速度和加速度的信息。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310205840.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top