[发明专利]基于稀疏表示的寄生虫虫卵识别方法有效

专利信息
申请号: 201310181012.4 申请日: 2013-05-15
公开(公告)号: CN103268494A 公开(公告)日: 2013-08-28
发明(设计)人: 李峰;曾晓辉;金红;潘雨青;陈盛霞 申请(专利权)人: 江苏大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 罗敏
地址: 212013 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 稀疏 表示 寄生虫 虫卵 识别 方法
【权利要求书】:

1.一种基于稀疏表示的寄生虫虫卵识别方法,其特征在于,包括以下步骤:

(1)建立初始字典:单类识别建立初始单类字典,多类识别建立初始联合字典;

(2)字典学习:使用K-SVD算法对字典进行学习,单类识别得到单类表示字典,多类识别得到联合表示字典和联合判别字典;

(3)处理输入图像:对输入图像进行金字塔压缩,用滑动窗口的方式对压缩图像进行分块,步长可以选择为一个或多个像素;对所有图像块进行稀疏表示,单类识别的字典采用单类表示字典,多类识别的字典采用联合表示字典;

(4)计算重建误差矩阵;

(5)获取候选图像块:利用步骤(4)中得到的重建误差矩阵,寻找其所有的局部最小值,选取其中最小的k个值所对应的图像块作为候选目标;

(6)识别候选图像块:对于单类识别情况,用阈值判别候选图像块,识别完成;对于多类识别情况,对候选图像块进行稀疏表示,使用联合判别字典,计算子字典重建误差,使用阈值方式对候选图像块进行判别与分类,识别完成。

2.根据权利要求1所述的基于稀疏表示的寄生虫虫卵识别方法,其特征在于:步骤(1)中,所述建立初始字典步骤如下:

(1)选择若干杂质较少且具有代表性的寄生虫虫卵图像样本c·n个,其中c为≥1的整数,代表类数,n代表每个类的样本数;

(2)采用高斯金字塔对c·n幅图像进行压缩,得到降维后的图像样本;

(3)以d度为间距,对上一步中得到的每幅图像旋转一周得到360/d个图像样本(包括原图),于是总样本数为N=360·c·n/d;

(4)将上一步得到的每个二维图像数据“拉长”为一维向量,再对每个向量进行标准化处理,使每个向量满足l2-范数为1;

(5)把上一步得到的所有标准化的向量作为字典的原子,得到初始字典,若c=1,则得到的是单类识别的初始单类字典,若c>1,则得到的是多类识别的初始联合字典,包含c个子字典。

3.根据权利要求1所述的基于稀疏表示的寄生虫虫卵识别方法,其特征在于:步骤(2)中,所述的使用K-SVD算法对字典进行学习,分为三种情况:

(1)针对单类寄生虫虫卵识别,用K-SVD算法对初始单类字典进行学习,得到单类表示字典,该字典同时用于初步定位与分类,字典的体积根据原子向量的维数而定;

(2)针对多类寄生虫虫卵识别,用K-SVD算法对整个初始联合字典进行学习,得到联合表示字典,该字典用于初步定位;

(3)针对多类寄生虫虫卵识别,用K-SVD算法对每个初始子字典进行学习,再将所有学习之后的子字典联合得到联合判别字典,该字典用于分类,其体积远大于联合表示字典的体积。

4.根据权利要求1所述的基于稀疏表示的寄生虫虫卵识别方法,其特征在于:步骤(3)中,所述的对所有图像块进行稀疏表示是大规模稀疏表示,即使用Batch-OMP算法求解公式(1-1)

min||x-Dθ||2s.t.||θ||0≤T     (1-1)

其中x为输入信号,D为步骤(2)中得到的单类表示字典或联合表示字典,θ为系数,T为稀疏性条件。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310181012.4/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top