[发明专利]基于泰勒展开积分退化模型的微扫描图像重构方法有效
申请号: | 201310157445.6 | 申请日: | 2013-05-02 |
公开(公告)号: | CN103236044A | 公开(公告)日: | 2013-08-07 |
发明(设计)人: | 金伟其;路陆;顿雄;王霞;李力;范永杰 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00 |
代理公司: | 北京理工大学专利中心 11120 | 代理人: | 李爱英;高燕燕 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 泰勒 展开 积分 退化 模型 扫描 图像 方法 | ||
1.一种基于泰勒展开积分退化模型的微扫描图像重构方法,其特征在于,
第一步:利用基于离散傅里叶变换DFT的亚像元图像配准算法,获得多帧微扫描图像的帧间位移量;
第二步:在步骤一获得的帧间位移量的基础上,利用基于帧间差分过采样技术,将多帧微扫描图像重建出一幅过采样图像gos[m,n];
第三步:建立焦平面探测器的积分退化模型,进行泰勒(Taylor)展开,得到积分退化函数H[u,v],用其构建Wiener滤波器MW[u,v],经直流分量归一化之后得到归一化后Wiener滤波器M′W[u,v],用其对第二步得到的过采样图像gos[m,n]进行Wiener滤波,复原出重构图像完成微扫描图像的重构;其中[u,v]为频域坐标,u为频域上的水平坐标,v为频域上的竖直坐标;
其中得到积分退化函数H[u,v]的过程为:
假设f(x,y)为经过光学系统成像在焦平面探测器上的模拟图像,g[m,n]为经焦平面探测器积分和采样后得到的退化图像,则
式中,a和b为焦平面探测器的水平和竖直像元间隔,p为像元在水平方向的尺寸,q为像元在竖直方向的尺寸,M×N为焦平面探测器像面规格,M为焦平面探测器像面在水平方向的尺寸,N为焦平面探测器像面在竖直方向的尺寸,(x,y)是模拟图像坐标系中的坐标,[m,n]是离散图像坐标系中的坐标,m为离散图像坐标系中的水平坐标,最大取值范围为焦平面探测器像面在水平方向的尺寸,n为离散图像坐标系中的竖直坐标,最大取值范围为焦平面探测器像面在竖直方向的尺寸;
对式(1)中f(x+ma,y+nb)关于f[m,n]进2阶泰勒展开得
式中,和分别表示图像f[m,n]在m和n方向上的2阶偏导数,fm[m,n]和fn[m,n]分别表示图像f[m,n]在m和n方向上的1阶偏导数,fmn[m,n]表示图像f[m,n]先在m方向上取1阶偏导数再在n方向上取1阶偏导数;为了抑制噪声,在数值上用式(4)近似和
将式(4)代入式(3),再进行DFT得
式中,F[u,v]和G[u,v]分别表示f[m,n]和g[m,n]的DFT,α=p/a和β=q/b分别表示焦平面探测器在水平和竖直方向的占空比;
因此,焦平面探测器的积分退化函数为H[u,v]
Wiener滤波过程为:
基于积分退分函数H[u,v],构建Wiener滤波器MW[u,v]
式中H*[u,v]为H[u,v]的复共轭;Γ为设定的常数;将MW[u,v]用直流分量归一化后得到归一化后Wiener滤波器M′W[u,v]
式中,MW[0,0]是MW[u,v]在u=0,v=0情况下的值,即MW[u,v]的直流分量;
步骤303、利用式(8)描述的Wiener滤波器M′W[u,v],对第二步得到的过采样图像gos[m,n]进行滤波,获得具有重建图像
式中,表示DFT运算,表示DFT逆运算。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310157445.6/1.html,转载请声明来源钻瓜专利网。