[发明专利]一种卡尔曼滤波传感器信息融合的故障检测方法有效
| 申请号: | 201310092570.3 | 申请日: | 2013-03-21 |
| 公开(公告)号: | CN103217172A | 公开(公告)日: | 2013-07-24 |
| 发明(设计)人: | 沈锋;宋丽杰;张桂贤;陈潇;李平敏;刘海峰;李强;徐定杰;宋金阳 | 申请(专利权)人: | 哈尔滨工程大学 |
| 主分类号: | G01C25/00 | 分类号: | G01C25/00;G01S19/20 |
| 代理公司: | 北京永创新实专利事务所 11121 | 代理人: | 赵文利 |
| 地址: | 150001 黑龙江*** | 国省代码: | 黑龙江;23 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 卡尔 滤波 传感器 信息 融合 故障 检测 方法 | ||
技术领域
本发明涉及一种基于标准化创新矩阵的卡尔曼滤波传感器信息融合故障检测方法,属于卡尔曼滤波器信息融合的故障检测技术领域。
背景技术
智能化、高精度、高可靠性是未来飞行器对导航系统的要求。信息融合技术可满足未来飞行器对导航系统的这些要求。在导航和控制领域中,不可避免要对卡尔曼滤波器进行有效的测试。基于此目的已经产生了一些算法并且也产生了相应测试卡尔曼滤波测试的算法技术,这样不仅能够确保故障定位和检测,还可以进行估计修正。目前,有很多卡尔曼滤波器测试的算法,应用哲学算法可以对卡尔曼滤波器不同特征标志进行故障检测。尽管卡尔曼滤波检测算法种类繁多,但是迄今为止,多通道卡尔曼滤波器修正的监测和诊断的问题还没有得到解决。
在航空航天和海军导航系统中,单一的导航系统已经无法满足系统的要求,组合导航系统越来越受到高度的重视,GPS,DGPS,GLONASS和INS系统都通过卡尔曼滤波集成不同的组合。在多传感器融合的复杂系统中,即同时从多个来源的动态系统状态向量来获取信息,联邦或平行卡尔曼滤波器用来整合不同的导航系统够能到得到和满意的效果。Kalman滤波器信息融合。系统参数和状态多通道估计算法已成熟并用于估计一个动态系统的一个数学模型,以及多个测量通道的量测。在卡尔曼滤波器的这些模型中,有效数据的联合处理,可以改善状态向量的估计精度和数据处理的可靠性。这些算法对检测Kalman滤波器信息融合的应用而言,每个估计信道都需要它自己的“故障检测器”,这样就需要很大的计算量。所以,考虑到多信道估计程序需要大量的计算,采用先前的技术实现测试Kalman滤波器信息融合就不是一个简单的问题。因此,有必要开发用于测试的多通道估计程序的简单算法,以执行实时测试滤波器没有故障情况下参量变化的先验信息。
发明内容
本发明的目的是为了简化在GPS/INS/DVL组合导航系统中卡尔曼滤波器的传感器信息融合故障检测方法,提出一种卡尔曼滤波传感器信息融合的故障检测方法,本发明能够简单快速检测卡尔曼滤波器的传感器信息融合情况,在得到了标准化创新矩阵谱范数后,再对其进行数理统计和区间估计,从而对卡尔曼滤波器的传感器信息融合进行简单快速的故障检测。
一种卡尔曼滤波传感器信息融合的故障检测方法,包括以下几个步骤:
步骤一:根据卡尔曼滤波理论,建立线性动态系统的状态方程和观测方程;
步骤二:根据步骤一得出的观测方程,利用最小二乘方法获取状态估计和相应的均方误差阵、新息序列;
步骤三:利用已知的新息序列,得到不同的渠道归一化的新息序列;并且组成m通道平行传感器的创新矩阵;
步骤四:根据步骤三所得的创新矩阵,获取创新矩阵的谱范数和谱范数的均值;
步骤五:对卡尔曼滤波传感器的信息融合进行故障检测;
本发明的优点在于:
(1)本发明采用平行算法同时联立所有测量通道组合为矩阵,这样不需要对每个通道分别进行检测,降低了系统的复杂程度;
(2)本发明采用数理统计和区间估计的方法,简化了复杂的计算,极大地提高了故障检测速度。
附图说明
图1是GPS/INS/DVL组合导航系统的容错结构图;
图2是卡尔曼滤波器的传感器信息融合图;
图3是本发明的方法流程图。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
如图1所示,在GPS/INS/DVL组合导航系统中(即卫星/惯导/多普勒计程仪组合导航系统),认为惯导系统除了其固有的漂移之外不发生其它故障。当任意子系统发生故障时,对故障进行有效的检测和滤波处理。当故障不可消除时,将有故障传感器隔离,当故障消除后,自动进行系统恢复。如图2所示,在卡尔曼滤波器中有m个传感器通道,要同时对m个通道的传感器进行信息融合。本发明提出一种卡尔曼滤波传感器信息融合的故障检测方法。基于引进的标准规范化创新矩阵的光谱范数数学期望的统计。这种方法允许数学期望和实时的创新序列方差的同时测试,并且不需要先验信息在故障时刻变化值的统计特征。使用这种方法,可对信息融合的卡尔曼滤波器进行故障检测。
本发明是一种基于标准化创新矩阵的卡尔曼滤波传感器信息融合的故障检测方法,流程如图3所示,包括以下几个步骤:
步骤一:根据卡尔曼滤波理论,建立线性动态系统的状态方程和观测方程;
线性动态系统的状态方程为:
x(k+1)=Φ(k+1,k)x(k)+G(k+1,k)ω(k) (1)
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310092570.3/2.html,转载请声明来源钻瓜专利网。
- 信息记录介质、信息记录方法、信息记录设备、信息再现方法和信息再现设备
- 信息记录装置、信息记录方法、信息记录介质、信息复制装置和信息复制方法
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录设备、信息重放设备、信息记录方法、信息重放方法、以及信息记录介质
- 信息存储介质、信息记录方法、信息重放方法、信息记录设备、以及信息重放设备
- 信息存储介质、信息记录方法、信息回放方法、信息记录设备和信息回放设备
- 信息记录介质、信息记录方法、信息记录装置、信息再现方法和信息再现装置
- 信息终端,信息终端的信息呈现方法和信息呈现程序
- 信息创建、信息发送方法及信息创建、信息发送装置





