[发明专利]一种基于一维Hough变换和专家系统的早期苗田垄线识别算法有效

专利信息
申请号: 201310057431.7 申请日: 2013-02-06
公开(公告)号: CN103186773A 公开(公告)日: 2013-07-03
发明(设计)人: 张志斌;刘占;高光来;许岗 申请(专利权)人: 内蒙古大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/54
代理公司: 暂无信息 代理人: 暂无信息
地址: 010021 内蒙古自治区呼和浩*** 国省代码: 内蒙古;15
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 hough 变换 专家系统 早期 田垄 识别 算法
【说明书】:

技术领域

发明涉及农业机械化技术领域,尤其涉及的是一种基于一维Hough变换和专家系统的早期苗田垄线识别算法。

背景技术

Marchant[1,2]等尝试使用Hough变换提取3垄信息,并通过摄像头内外参数标定获得视觉导航参数,但没有进行多垄信息融合,并分析了Hough变换可以提取多垄信息,且具备实现农业机械实时、低速自主作业的条件。随后Marchant[3]等将视觉信息、车速信息通过Kalman滤波融合,规划出行车策略,标准偏差为20mm,满足农田机械进行喷施等作业条件。Pla[4]等基于视觉系统图像中垄线将于图像外一虚点处汇交,开发了基于虚点预测缺失垄行的垄线识别算法,有效利用了系统成像特点,使系统的检测性能得到了改善,进而结合系统模型结构参数获得导航参数。经过图像序列的测试,算法鲁棒性较好,能够克服一些断垄等的影响。Sanchiz[5]等提出了视觉导航和精确喷施车辆模型算法,试图建立车辆运动参数与喷施决策的关系地图以实现自动导航和自动精确喷施。主要内容包括基于图像特征序列反向获取车辆的运动参数、车辆路径识别和基于Kalman滤波的目标恢复。在文献[6]中他们进一步完善了该视觉导航和自动喷施系统,通过静态图像处理测试对系统性能进行了分析,将农业机械的视觉导航、自动喷施和控制转向功能模块进行了协调和规划,在农业机械自主作业系统的研制方面做了一些有益的探索。瑞典的Astrand[7]等提出了基于矩形条的视觉导航系统垄行识别算法。其特点是采用Hough变换在矩形条内提取目标线,目标线的条数与垄行宽度相对应,属于某一垄行的“目标线”必定相交于图外一“虚点”,利用这些条件可通过检测目标线条数决定垄行,然后取多个垄行的平均得到行垄信息,有效地抑制了杂草噪声的影响,实验的标准偏差为厘米级。其特点是有效利用了多垄信息克服杂草噪声影响。澳大利亚的Billingsley[8]等开发出一种成功的农业机械视觉导航系统。该系统采用条形框捕获作物行像素,然后在条形框内通过回归的方法拟合出垄线;同时,通过计算条形框内目标像素的距来去除杂草等噪声。在视觉系统摄像头安置的视角下,可在三个条形框内对垄像素进行回归处理,所拟合出的三条垄线必定相交。利用该相交点的序列值变化与条形框的中心位置变化可分别估算出系统的航向角参数和侧向距离参数。该系统在棉田实验取得了较好效果,能够保持2cm系统精度。其特点是尽量避免较大的计算,在不影响数据处理的情况下直接访问内存(DMA)图像数据,提高了系统的实时性;其不足之处是:条形框内目标垄像素数的判断具有不确定性,且条形框的形状参数设置会影响垄线的拟合。因此,在作物生长比较规整、土地比较平坦和垄行结构比较清晰的条件下,该系统具有较好的性能。比利时的Leemans[9]针对收获期菊苣垄田特点,提出了可适Hough变换识别垄沟线算法。该算法采用中值滤波器去除土壤背景和阴影,通过神经网络确定作物植株位置。但当作物根部与土壤具有相同颜色,光照条件变化时,作物与土壤背景的分割仍较困难。采用可适Hough变换提取各目标类垄线,并计算垄线的参考位置与角度,其鲁棒性较强,试验结果较好,能够满足农田视觉导航要求;但当作物垄出现缺失时,算法将导致不期望的结果。在另一篇文献[10]中,作者进一步开发了基于播种线识别的辅助视觉导航系统,田间试验结果的(包括系统)误差小于100mm,可满足农田条播作业视觉导航的要求,并指出该系统对摄像头的安装要求较高。美国的Zhang[11]采用了GPS、GDS、罗盘和视觉传感器等多源信息融合技术构建农田自动导航系统,分析了各传感器的优势,并指出信息融合是实现农田自动导航较好的方式。此后,Han[12]等提出基于视觉的导航基准线算法。该算法先采用K均值聚类分割垄行,然后计算目标区域矩识别垄行,最后构建代价函数确定导航线。对大豆田30幅图像的试验结果:平均RMS侧向误差为1.0cm,平均代价为4.99;相对15幅谷子田图像的处理结果:平均RMS侧向误差为2.4cm,平均代价为7.27,可满足农田机器视觉导航作业的精度要求。Bakker[13]等为了改善视觉导航图像处理的速度,提出了基于灰度图像的Hough变换和图像融合的垄线检测方法。大棚环境下每幅图像的处理速度达到0.5~1.3s,但缺乏对垄线结构的信息的获取。Pajares[14]等针对严重杂草侵害的玉米田,提出基于模板匹配的垄行自动识别算法。该算法考虑了田间机器人位姿信息对垄线匹配的影响,但垄线模板的形式受到限制,会影响其识别的准确性。Guerrero[15]等设计了采用专家系统识别垄线,利用了绿色加强算法,并采用Otsu方法进行二值化阈值获取,最后基于Theil-Sen进行垄线矫正处理。但在农业机械低速作业情况下,该算法的时间开销较大,最短的时间消耗为0.476s,随图像背景复杂甚至到达9s。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于内蒙古大学,未经内蒙古大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310057431.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top