[发明专利]结合局部和非局部的自适应图像去噪方法有效

专利信息
申请号: 201310030379.6 申请日: 2013-03-06
公开(公告)号: CN103077506A 公开(公告)日: 2013-05-01
发明(设计)人: 王桂婷;焦李成;丁炜;马文萍;马晶晶;钟桦 申请(专利权)人: 西安电子科技大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;朱红星
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 结合 局部 自适应 图像 方法
【说明书】:

技术领域

发明属于图像处理技术领域,具体的说是一种结合局部和非局部的自适应图像去噪方法,可用于医学影像、天文学影像、视频多媒体等领域的数字图像预处理。

背景技术

图像去噪技术解决了图像在获取、编码及传输等过程中受到的各种噪声干扰所导致的图像质量下降问题,提高了图像质量,是图像处理中的重要环节和研究内容。

图像去噪技术大致是从空域和变换域两方面来进行的,目前效果较好的空域滤波方法有非局部均值滤波去噪方法NLM、稀疏表示下的图像去噪方法KSVD等,较好的变换域的滤波方法有三维块匹配去噪方法BM3D等。

非局部均值滤波去噪方法NLM,是Buades等人在文献“A non local algorithm for image denoising.IEEE Conference on Computer Vision and Pattern Recognition,2005,vol.2,pp:60-65.”中提出来的。该方法通过计算图像中两个像素点邻域的相似度来确定该点对所要求的点的信息补偿程度,中心点的灰度值为邻域内像素点灰度值的加权平均。该方法存在的不足是,过于强调邻域内像素点的非局部信息而忽略了中心像素点自身的局部信息,导致图像边缘细节信息丢失严重。

稀疏表示下的图像去噪方法KSVD,是Elad等人在文献“Image denoising via spare and redundant representations over learned dictionaries.IEEE Transactions on Image Processing,2006,vol.15no.12,pp.3736-3745.”中提出来的。该方法是用图像块在冗余字典上的稀疏近似来实现图像去噪,图像块在冗余字典上越稀疏,则逼近原图像块的信息就越准确。该方法存由于只是对图像块自身进行稀疏逼近,利用的只是图像块自身的局部信息,而忽视了邻域图像块的非局部信息,因而对图像的平滑区域去噪效果不理想。

三维块匹配去噪方法BM3D,是Dabov等人在文献“Image denoising by sparse3-D transform-domain collaborative filtering.IEEE Transactions on Image Processing,2007,vol.16no.8,pp.2080-2095.”中提出来的。该方法不仅利用了图像的结构信息,而且结合了变换域的阈值方法,是一种结合局部、非局部、多尺度稀疏的自适应非参数化的滤波技术。但该方法仍然存在的不足是,对图像块稀疏逼近采用的是离散余弦变换DCT字典,由于该字典是一个固定字典,不能有效地逼近原图像的边缘和细节信息,易造成原图中部分边缘和纹理细节丢失。

发明内容

本发明的目的在于针对上述去噪方法的不足,提出一种结合局部和非局部的自适应图像去噪方法,以保持图像的边缘和纹理细节,提高图像的去噪效果。

实现本发明的技术思路是:利用基于非局部均值NLM的自适应去噪算法对图像块进行去噪,并通过BM3D的聚集方法对去噪后的图像块进行重构获得去噪图像,其具体实现步骤包括如下:

(1)输入一幅N行M列的含噪图像Y,设置最大迭次数γ和停止参数δ;

(2)采用下式估计含噪图像Y的噪声标准差σn

σn=median(abs|W|)0.6745,]]>

其中,W为含噪图像Y进行小波分解得到的第一层高频系数,abs|·|是取绝对值操作,median(·)是取中值操作;

(3)以含噪图像Y中的任意像素点为中心,分别确定一个l×l大小的位置区域Γi和一个s×s大小的搜索窗Ωi,提取含噪图像Y的位置区域Γi的像素得到图像块yi,其中i∈{1,...,N×M},l、s的取值范围分别为5~11和21~41奇数个像素;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310030379.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top