[发明专利]公钥密码体制中的外包计算方法、设备和服务器有效

专利信息
申请号: 201310018242.9 申请日: 2013-01-17
公开(公告)号: CN103067165A 公开(公告)日: 2013-04-24
发明(设计)人: 张永强;刘镪;梁文晖 申请(专利权)人: 广东数字证书认证中心有限公司
主分类号: H04L9/30 分类号: H04L9/30;H04L29/08
代理公司: 广州华进联合专利商标代理有限公司 44224 代理人: 王茹;曾旻辉
地址: 528200 广东省佛*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 密码 体制 中的 外包 计算方法 设备 服务器
【说明书】:

技术领域

发明涉及密码学相关技术领域,特别是涉及公钥密码体制中的外包计算方法、设备和服务器。

背景技术

椭圆曲线密码体制(ECC)作为一种公钥密码体制,其基本原理是在一个预先定义的椭圆曲线上面执行点乘运算其中点G是固定参数,k是随机产生的大数。为了保证数字签名算法自身的安全性,要求k是真正的物理随机数。点乘运算Q=kG可以分解为点加、倍点、模乘等基本运算,这些基本运算都建立在有限域Fp的数学基础上。

有限域Fp上的椭圆曲线方程可以存在多种形式,其中典型的椭圆曲线方程形如y2=x3+ax+b(4a3+27b2≠0modp),在该椭圆曲线上的所有点及无穷远点∞构成椭圆曲线点集E(Fp)={(x,y)|x,y∈Fp,y2=x3+ax+b}∪{∞},椭圆曲线点集E(Fp)的阶为n=#E(Fp)。在椭圆曲线上定义点加运算,则椭圆曲线点集E(Fp)构成一个Abel群。在点加运算的基础上,可以导出倍点运算、点乘运算,其中点乘运算(kG)是椭圆曲线密码体制的核心运算。椭圆曲线上的运算可以采用不同的坐标系来表达,常用的坐标系是仿射坐标系和Jacobi投影坐标系,以下分别加以介绍。

仿射坐标系:平面上过一定点O作两条相交的坐标轴x和y,它们的交角是ω。以定点O作为原点,在每条坐标轴上定义长度单位(分别是OE1、OE2),这样就在平面上建立了一个仿射坐标系。对于平面上任一点M,过M作两坐标轴的平行线,与坐标轴分别交于M1、M2,它们在两轴的坐标分别标记为x、y,于是点M就对应有序数组(x,y)。

Jacobi投影坐标系:Jacobi投影坐标系下的点(X,Y,Z)与仿射坐标系下的点(x,y)一一对应。给定仿射坐标系下的座标(x,y),转换成Jacobi投影坐标系下的坐标为(X,Y,Z),其中X=x、Y=y、Z=1;给定Jacobi投影坐标系下的坐标(X,Y,Z),转换成仿射坐标系下的座标为(x,y),且满足x=X/Z2、y=Y/Z3。同时,仿射坐标系下的无穷远点∞和Jacobi投影坐标系下的点(1,1,0)对应。

在椭圆曲线上任取两点P(x1,y1)、Q(x2,y2),令O表示无穷远点,定义点加运算R(xR,yR)=P+Q,其运算规则如下:

(1)P+O=O+P=P;

(2)-P=(x1,-y1),P+(-P)=O;

(3)若Q≠-P,则xR=λ2-x1-x2yR=λ(x1-xR)-y1,]]>

其中,当x1≠x2时当x1=x2

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东数字证书认证中心有限公司,未经广东数字证书认证中心有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310018242.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top