[发明专利]基于beta噪声核岭回归技术的短期风速预报方法有效

专利信息
申请号: 201310006821.1 申请日: 2013-01-08
公开(公告)号: CN103020485A 公开(公告)日: 2013-04-03
发明(设计)人: 胡清华;张仕光 申请(专利权)人: 天津大学
主分类号: G06F19/00 分类号: G06F19/00
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 刘国威
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 beta 噪声 回归 技术 短期 风速 预报 方法
【说明书】:

技术领域

发明涉及天气预报技术领域,具体讲,涉及基于beta噪声核岭回归技术的短期风速预报方法。

背景技术

对于线性系统而言,从Gauss时代起,就利用最小二乘法把平面上的点拟合成直线,把高维空间的点拟合成超平面。经历了100多年的发展,经典最小二乘法已经成为许多领域数据处理的最广泛使用的方法。但是,对于线性回归中的不适定问题,基于最小二乘法的线性回归的性能可能变得很坏,针对这种情况,众多学者研究了最小二乘回归的改进问题,提出了许多新的回归算法。岭回归(Ridge regression,简记为RR)就是其中之一,岭回归分析是一种专门用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的耐受性远远强于最小二乘法。岭回归算法自A.E.Hoerl和R.W.Kennard于1962年提出以来,就得到了广泛的关注,它成功应用于科学技术和社会科学等各个方面。设给定数据:

Dl={(x1,y1),(x2,y2),L,(xl,yl)}(1)

其中xi∈Rn,yi∈R,i=1,2,L,l,多元线性回归模型为f(x)=ωT·x+b,其中x=(x1,x2,…,xl)T,参数向量ω∈Rn决定最小二乘回归和岭回归模型,其中,xi∈X=Rn,Rn表示n维欧式空间,R表示实数集,l表示样本个数,上标T表示转置。通过最小化目标函数:

gLR=Σi=1l(yi-ωT·xi-b)2---(2)]]>

gRR=12ωTω+CΣi=1l(yi-ωT·xi-b)2---(3)]]>

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310006821.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top