[发明专利]多孔NiMn2O4为敏感电极的YSZ 基混成电位型NO2传感器及制备方法有效
申请号: | 201210450809.5 | 申请日: | 2012-11-12 |
公开(公告)号: | CN102967641A | 公开(公告)日: | 2013-03-13 |
发明(设计)人: | 梁喜双;关瀛洲;卢革宇;刁泉;尹成果;厉健峰;胡光斓 | 申请(专利权)人: | 吉林大学 |
主分类号: | G01N27/407 | 分类号: | G01N27/407 |
代理公司: | 长春吉大专利代理有限责任公司 22201 | 代理人: | 张景林;刘喜生 |
地址: | 130012 吉*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 多孔 nimn sub 敏感 电极 ysz 混成 电位 no 传感器 制备 方法 | ||
技术领域
本发明属于气体传感器领域,具体涉及一种以多孔NiMn2O4为敏感电极的YSZ基混成电位型NO2传感器及制备方法,其主要用于汽车尾气的检测。
背景技术
汽车排放的氮氧化物(NOx)是造成城市大气污染的主要原因,随着汽车保有量的快速增长,由NOx所导致的环境问题将更加严峻和突出。对于柴油车和使用稀燃发动机的汽油车,由于排气中残留氧气浓度较高,传统的三元催化剂已不能有效地除去NOx,需要在其后加装吸藏型催化剂对NOx进行吸收,此系统中必须使用NOx传感器。NOx传感器在新型排气处理系统中担当两个角色:一是实时监控发动机的燃烧状态,二是监视吸藏型催化剂是否达到饱和,可见NOx传感器在新型排气处理系统中发挥着关键作用。由于汽车排气是典型的高温、高湿和多种气体共存环境,传感器需要在上述苛刻条件下工作,不仅要求NOx传感器要有良好的敏感特性(灵敏度、选择性和响应-恢复特性),还要求在使用环境下具有良好的稳定性。基于固体电解质和氧化物电极的混成电位型传感器除具有灵敏度高、响应恢复快、选择性好和可靠性高等优点外,典型的固体电解质---稳定氧化锆(YSZ)和氧化物电极材料具有良好的热稳定性和化学稳定性,因此由二者构成的NOx传感器在汽车排气监控领域具有潜在的重要应用。
图1描述了稳定氧化锆基混成电位型NOx传感器的敏感机理,气氛中NO2通过敏感电极层向三相反应界面扩散,在扩散过程中由于发生反应(1),NO2的浓度会逐渐降低,氧化物敏感电极的多孔性和膜厚度决定NO2浓度的降低程度;在三相反应界面,同时发生电化学氧化反应(2)和还原反应(3),两者达到平衡时形成混成电位,它与参考电极的电位差作为传感器的检测信号。检测信号大小由电化学反应(2)和(3)的速率来决定,而反应率取决于电极材料的分子组成、分子结构、微观结构(比如材料的多孔性、粒度、形貌等)。
反应式如下:
NO2→NO+1/2O2 (1)
NO2+2e-→NO+O2- (2)
2O2-→O2+4e- (3)
目前,国内外对传感器敏感电极进行了很多的研究,其中二元氧化物和尖晶石材料备受大家的亲睐。其中尖晶石结构(通式AB2O4型,A为+2价阳离子,B为+3价阳离子)的材料已经证明是很好的敏感电极材料。日本九州大学传感器专家N.Muria教授研究组制作的以NiO为敏感电极的混成电位传感器对100ppmNO2的混成电位值为10~20mV(Perumal Elumalai,Norio Miura,Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature,Solid State Ionics 176(2005)2517-2522),限制这种传感器实用化的一个主要因素就是灵敏度还达不到实用的要求。在文献中报道的此类传感器中灵敏度低的主要原因之一是材料过于致密、扩散性差,气体在到达三相界面之前被大量消耗,导致在三相界面处气体浓度降低、灵敏度下降。如果设计具有特殊微观结构的多孔氧化物作为敏感电极,就可以提高扩散速率,有效降低NOx的消耗,使灵敏度明显提高。
发明内容
本发明的目的是提供一种以多孔NiMn2O4为敏感电极的YSZ基混成电位型NO2传感器及其制备方法,以提高NO2传感器灵敏度等性能。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210450809.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种充气式颈椎顶撑牵引器
- 下一篇:一种遭受血液污染的丝织品文物的清洗方法
- 多孔NiMn<sub>2</sub>O<sub>4</sub>为敏感电极的YSZ 基混成电位型NO<sub>2</sub>传感器及制备方法
- 空心球形NiMn<sub>2</sub>O<sub>4</sub>锂离子电池负极材料及制备方法
- 消除空气中苯系挥发性有机物的NiMn复合氧化物催化剂及其制备方法
- 多孔二元NiMn氧化物锂电负极材料及其制备方法
- 一种多孔层状复合电极材料及制备方法与应用
- 介孔NiMn<sub>2</sub>O<sub>4</sub>催化剂的制备方法、由此制备的催化剂及其用途
- 一种电化学离子交换法制备电极材料的方法及其电极材料
- 一种用于检测抗坏血酸的微球链及其制备方法和应用
- 一种NiMn MOF及其制备方法和应用
- 一种负载NiMn-LDH的P-Mo<base:Sub>2
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法