[发明专利]基于预测模型的高超声速飞行器神经网络控制方法有效
| 申请号: | 201210375645.4 | 申请日: | 2012-09-29 |
| 公开(公告)号: | CN102880055A | 公开(公告)日: | 2013-01-16 |
| 发明(设计)人: | 许斌;史忠科 | 申请(专利权)人: | 西北工业大学 |
| 主分类号: | G05B13/04 | 分类号: | G05B13/04;G05D1/00 |
| 代理公司: | 西北工业大学专利中心 61204 | 代理人: | 王鲜凯 |
| 地址: | 710072 *** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 预测 模型 高超 声速 飞行器 神经网络 控制 方法 | ||
1.一种基于预测模型的高超声速飞行器神经网络控制方法,通过以下步骤实现:
(a)考虑高超声速飞行器纵向通道动力学模型:
该模型由五个状态变量Xs=[V,h,α,γ,q]T和两个控制输入Uc=[δe,β]T组成;其中,V表示速度,γ表示航迹倾角,h表示高度,α表示攻角,q表示俯仰角速度,δe是舵偏角,β为节流阀开度;T、D、L和Myy分别代表推力、阻力、升力和俯仰转动力矩;m、Iyy、μ和r代表质量、俯仰轴的转动惯量、引力系数以及距地心的距离;
(b)定义X=[x1,x2,x3,x4]T,其中x1=h,x2=γ,x3=θ,x4=q,θ=α+γ;因为γ非常小,取sinγ≈γ;考虑到Tsinα远小于L,在控制器设计过程中近似忽略;
高度子系统(2)-(5)写成以下严格反馈形式:
uA=δe
速度子系统(1)写为如下形式:
uV=β
其中fi,gi,i=1,2,3,4,V是根据(1)-(5)得到的未知项,分为标称值fiN,giN与不确定性Δfi,Δgi;
(c)考虑采样时间Ts非常小,通过欧拉近似法得到高度子系统离散模型:
xi(k+1)=xi(k)+Ts[fi(k)+gi(k)xi+1(k)]
(6)
x4(k+1)=x4(k)+Ts[f4(k)+g4(k)uA(k)]
其中i=1,2,3;
通过欧拉近似法建立速度子系统的离散模型:
V(k+1)=V(k)+Ts[fV(k)+gV(k)uV(k)]
进一步建立系统(6)的预测模型(7):
x1(k+4)=fA(k)+gA(k)uA(k) (7)
其中
相应的标称值记为:fAN(k)和gAN(k);
(d)在动力学参数未知情况下,采用神经网络对系统不确定部分进行估计,按照标称值设计控制器;
定义误差ZA(k)=x1(k)-x1d(k);不确定项
定义θA(k)=[XT(k),x1d(k+4)]T,采用神经网络对UA(k)进行估计,得到
其中为神经网络权重向量的估计值,SA(·)神经网络基函数向量;设计控制器
其中0<CA<1为误差比例系数;
神经网络权重自适应更新律为:
其中λA>0,0<δA<1,kA=k-3;
针对速度子系统,定义θV(k)=[V(k),XT(k),Vd(k+1)]T,zV(k)=V(k)-Vd(k),
设计控制器
其中0<CV<1为误差比例系数,是和的标称值,为神经网络权重向量的估计值,SV(·)神经网络基函数向量;
神经网络权重自适应更新律为:
其中λV>0,0<δV<1;
(e)根据得到的舵偏角uA(k)和节流阀开度uV(k),返回到高超声速飞行器的动力学模型(1)-(5),对高度和速度进行跟踪控制。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210375645.4/1.html,转载请声明来源钻瓜专利网。
- 上一篇:取代-2-羰基咪唑类化合物的制备方法
- 下一篇:不锈钢复合板爆炸结合的方法





