[发明专利]一种融合视觉显著性和灰度共生矩的纹理特征提取方法有效
| 申请号: | 201210327822.1 | 申请日: | 2012-09-06 |
| 公开(公告)号: | CN102831427A | 公开(公告)日: | 2012-12-19 |
| 发明(设计)人: | 肖德贵;辛晨;曾凡仔 | 申请(专利权)人: | 湖南致尚科技有限公司 |
| 主分类号: | G06K9/46 | 分类号: | G06K9/46;G06T7/00 |
| 代理公司: | 长沙市融智专利事务所 43114 | 代理人: | 黄美成 |
| 地址: | 410080 湖南省长沙市*** | 国省代码: | 湖南;43 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 融合 视觉 显著 灰度 共生 纹理 特征 提取 方法 | ||
技术领域
本发明属于计算机视觉方法领域,涉及一种融合视觉显著性和灰度共生矩的纹理特征提取方法。
背景技术
目标检测是计算机视觉研究中的一个重要课题,它是目标行为理解的基础,是图像系统连续准确工作的重要部分,视觉目标检测通常是指在图像或者连续变化的视频序列中对感兴趣区域或者目标对象进行精确定位。计算机视觉目标检测在机器人定位与导航、智能交通工具、视频监控、视频编解码压缩技术、虚拟现实的人机交互等应用中具有非常重要的价值和意义。如何有效提高目标检测算法在复杂环境下的准确性,以及如何增加算法在多变场景下的鲁棒性,一直是目标检测的两个关键问题。
基于表观特征的图像目标检测是主要方法之一。表观特征,又被定义成图像特征空间(也叫做描述算子),基于表观特征的图像目标检测方法可以分为整体法、局部法、特征点对法。不管是整体、局部还是特征点对法,一个核心的问题是如何有效表示目标的整体特征、部位特征或者局部块特征,方向梯度直方图特征是目前广泛使用的目标特征表示。典型的如梯度方向直方图特征(Histogram of Oriented Gradient,简称HOG),HOG基于梯度信息并允许块间相互重叠,因此,对光照变化和偏移不敏感,能较好地刻画目标的边缘特征,但HOG也有其缺点:特征维度高,大量的重叠和直方图统计,使得特征的计算速度慢,影响实时性;遮挡处理能力较差;未利用颜色、形状和纹理等特征。针对这些缺点,近年来一些研究者提出了更多的特征:如COV、Integral Channel Feature、ACF、GGP、SIFT等。但是方向梯度无法刻画人眼视觉敏感度,信息冗余度大,实时性、准确性和鲁棒性都较差。
发明内容
本发明所要解决的技术问题是提供一种融合视觉显著性和灰度共生矩的纹理特征提取方法,本发明提供的模拟人眼观察事物的发散性及显著性特点的纹理特征提取方法,计算简单,冗余度低,实时性好。
发明的技术解决方案如下:
一种融合视觉显著性和灰度共生矩的纹理特征提取方法,包括以下步骤:
步骤1、初始化步骤:
对某一图像,确定检测窗口、基本块和超级块大小;
步骤2、以基本块为单位计算显著性因子和图像的纹理结构特征向量:
显著性因子的计算过程:
对图像中的每一个像素,先计算所有邻域像素与中心像素灰度值的差值总和,再计算局部显著因子;进一步确定当前像素点的显著性因子;
纹理结构特征向量的计算方法:
用发散灰度共生矩阵提取图像的局部纹理结构;用一维向量即纹理结构特征向量表示局部纹理结构;
步骤3、以超级块为单位,通过二维直方图结合显著性因子和纹理结构特征向量生成显著性纹理结构特征描述算子;根据显著性因子算子、检测窗口大小、基本块大小、超级块大小,为每个超级块中提取一个显著性纹理结构特征描述算子,并以一维特征向量表述。【在检测窗口中按基本块的尺寸大小为步进滑动提取每个超级块的特征子,然后按顺序连结起来,从而形成最终的显著性纹理结构特征描述算子。】
步骤1中,将检测窗口分成n*m个基本块,将任何相邻的2*2个基本块组成一个超级块。
步骤2中,
局部显著因子为邻域像素和中心像素灰度值差的总和与中心像素灰度值的比值,即
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南致尚科技有限公司,未经湖南致尚科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210327822.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:可插式光收发器及其制造方法
- 下一篇:喷丝板镜检仪





