[发明专利]在建大坝混凝土智能温度控制方法及系统有效

专利信息
申请号: 201210289192.3 申请日: 2012-08-14
公开(公告)号: CN102852145A 公开(公告)日: 2013-01-02
发明(设计)人: 李庆斌;林鹏;胡昱;周绍武;汪志林;王仁坤;洪文浩;高向友 申请(专利权)人: 清华大学;中国长江三峡集团公司;中国水电顾问集团成都勘测设计研究院
主分类号: E02D15/00 分类号: E02D15/00
代理公司: 北京众合诚成知识产权代理有限公司 11246 代理人: 史双元
地址: 100084 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 在建 大坝 混凝土 智能 温度 控制 方法 系统
【说明书】:

技术领域

发明涉及在建大坝混凝土智能温度控制方法及系统,尤其涉及高混凝土坝浇筑过程中混凝土通水智能温度控制。

背景技术

对于特高拱坝,施工期的防裂的重点是混凝土温度控制。拱坝混凝土的温度问题主要应从控制温度和改善约束两方面来解决。从温控角度,混凝土浇筑温度、混凝土最高温度以及最终稳定温度是三个特征温度,最高温度等于浇筑温度加上水化热温升。而最终稳定温度取决于当地气候条件和坝体结构形式,所以工程上主要控制的是浇筑温度和水化热温升。目前高拱坝的施工中温度控制主要控制3个温差:基础温差、内外温差和上下层温差。

在一般气温或严寒地区,大型水电工程中大体积混凝土的通水冷却(或加热)温控,是降低大体积混凝土水化热引起的温度应力,避免开裂和达到设计要求的封拱灌浆温度必须采取的工程技术措施。水电工程通水热交换技术复杂,是工程建设设计与研究重要内容。基础温差通过最高温度控制,内外温差通过表面保温和内部通水冷却(加热)温度控制,上下层温差则通过混凝土最高温度及合理的通水冷却过程控制。通水冷却第一次在工程领域中的正式应用源于上世纪30年代,1931年美国垦务局在欧瓦希(Owyhee)拱坝上进行了混凝土水管冷却的现场试验,结果令人满意。此后的两年,美国垦务局在修建胡佛水坝(Hoover)的过程中首次在混凝土仓中全面预埋冷却水管进行人工冷却,起到了较理想的温控防裂效果。随后冷却水管以其应用的灵活性、可靠性及多用性等特点,在世界各国混凝土坝的施工中被广泛采用。我国在1955年修建第一座混凝土拱坝——响洪甸拱坝时,首次采用了预埋冷却水管,建成后得到了不错的防裂效果。随后,在三峡大坝、周公宅拱坝、二滩拱坝、大潮山围堰、索风营水电站碾压混凝土坝、龙滩水电站碾压混凝土重力坝、白沙水库、锦屏一级拱坝、溪洛渡拱坝等众多的大型水利工程中得到了广泛应用,并获得了较好的温控防裂效果。随着我国在西藏高寒地区建设的混凝土工程越来越多,在高寒地区涉及到对混凝土通水加热的控制,以便控制混凝土的温度梯度,防止大体积混凝土开裂。从众多的大体积混凝土工程实践当中,可以看出水管冷却这种人工冷却的方法,已成为混凝土坝设计和施工中不可或缺的一项关键温控防裂措施。

大量工程实践表明,在高温季节浇筑混凝土时,受入仓温度、太阳辐射和通水冷却等外界条件的影响,混凝土浇筑仓温度很难完全控制不超过容许最高温度。为了使混凝土材料性能正常发展,必须使混凝土浇筑仓最高温度达到合适的温度。即混凝土浇筑仓的最高温度不能过高,也不能过低。大坝施工期温控的目的是通过人工通水冷却实施温度控制,使混凝土温度保持在设计温度(按照设计的“温度-时间曲线”)附近,从而使施工程序和质量可控。简单的说,整个通水冷却是一个温度目标控制,是按照设计要求,将每阶段的混凝土温度调整(降低或升温),或控制在一定的T温度点附近。

但有很多因素会直接影响温度控制效果,这些因素大致分类如下:(1)不同气温、不同浇筑温度、不同水管间距、不同施工细节、不同的水管材质(夯实程度、水管布置合理程度等)等,可能导致浇筑块的密度不同,从而导致内部发热状态不一致,要求对各浇筑块个性化冷却控制;(2)不同仓水管变形程度不同,导致需要不同流量控制,最好做到每组冷却支管单独温控;(3)人工调整通水流量间隔长,人工采集温度和流量数据工作量大、且受主观因素以及设备运行状况影响较大;(4)目前控制不能做到实时、在线,现有冷却系统受制于工程施工传统、工程配套技术水平与施工成本的限制,难以布置足够的相关采集仪器,特别是大坝混凝土温度数据,难以做到实时动态的反馈控制。

目前大坝施工期控温采用的策略主要弊端包含:

(1)目前通水冷却或加热的监控主要通过人工球阀、水银温度计和传统水表采用人工记录,然后根据记录数据进行人工现场调控流量。人工调整通水流量间隔长,人工采集温度和流量数据工作量大、且受主观因素以及设备运行状况影响较大,导致巨大的水资源浪费,为了避免大坝温度过高,在现有技术的温度控制中,往往采取宁可加大通水流量的策略,这样在长周期大坝建设过程中,造成巨大的不必要的水资源浪费,经济利益损失也很巨大。;

(2)现有通水系统精度差,效率低,数据可靠度不高,采集时间间隔长,信息反馈慢,常常导致混凝土温控控制不理想;

(3)现有控温由于不存在自动在建混凝土大坝温度控制采集系统,而且也不存在具体的控制策略。往往不能够将大坝混凝土温度精确控制在设计温度曲线附近,人工测量与控制往往不能够实时,导致实际大坝温度控制与预期偏离很大。因此大坝施工中,在保温效果不加,或者突遇寒潮时,往往防裂效果差,容易导致大坝开裂破坏。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学;中国长江三峡集团公司;中国水电顾问集团成都勘测设计研究院,未经清华大学;中国长江三峡集团公司;中国水电顾问集团成都勘测设计研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210289192.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top