[发明专利]双树复小波域的邻域自适应贝叶斯收缩图像去噪方法无效

专利信息
申请号: 201210224036.9 申请日: 2012-06-30
公开(公告)号: CN102800056A 公开(公告)日: 2012-11-28
发明(设计)人: 丁勇;张稳稳;王亚雄;段克峰;蒋一帆;邢天玮;李浙鲁 申请(专利权)人: 浙江大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 杭州天正专利事务所有限公司 33201 代理人: 王兵;王利强
地址: 310027 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 双树复小波域 邻域 自适应 贝叶斯 收缩 图像 方法
【说明书】:

技术领域

发明涉及图像去噪技术,尤其涉及一种图像去噪方法。

背景技术

在图像的获取和传输的过程中,往往会引入一定的噪声而影响图像的质量,图像受到高斯白噪声干扰的模型如下:

y=x+n

其中,y为含噪图像,x为无噪图像,n为加性高斯白噪声。

如何有效地从含噪图像中恢复出真实图像,尽可能消除噪声的影响并保留重要的信号特征,是当前数字图像处理领域的一个研究热点。由于信号的压缩性和噪声的非压缩性,近几年基于小波变换的去噪技术引起了越来越多的关注。

小波去噪算法的主要处理过程包括:1)对含噪图像进行小波分解,得到小波变换系数;2)对小波变换系数进行相应的处理,如阈值处理等,尽可能消除噪声和保留图像细节信息;3)进行逆小波变换,重构得到去噪后的图像。在传统的小波去噪算法中,比较典型的方法是基于阈值法。该方法通过预先估计的一个阈值T对小波系数进行比较处理,当小波系数的幅值|w|小于T时,将小波系数置为零;否则,不做处理或者对其进行收缩。1994年Donoho和Johnstone提出了一种基于通用阈值的小波去噪方法:VisuShrink。在该方法中,对所有的小波系数来说,只选用唯一的阈值。实验结果表明VisuShrink去噪后图像过于平滑,并且对图像细节信息的保留不够,去噪效果不够理想。为使阈值具有自适应的特性,Chang等人提出了BayesShrink阈值去噪方法。此方法在假设无噪图像的小波系数服从广义高斯分布(Generalized Gaussian Distribution,GGD)的前提下,通过最小化贝叶斯风险函数,得到一个可根据图像统计特性自适应调整的最优阈值,并经过软化处理,从而获得较好的去噪效果。但是,上述方法都假定小波系数是独立的,而且没有考虑到系数间的相关特性。为充分考虑小波系数的相关性,随后出现了一些改进方法:Sendur等人提出的BiShrink方法,考虑了父子系数的相关性;Zhou等人提出的BlockShrink,考虑了系数间的邻域相关性;Dongwook等人提出的NeighShrink,考虑了系数间的邻域相关性和层内相关性;宫霄霖等人提出的基于自适应邻域系数的小波图像阈值降噪,考虑了系数间的层内相关性;武海洋等人提出的基于最小Bayes风险的小波域局部自适应图像去噪,以冗余小波为基础,考虑了子带内小波系数间的相关性。实验结果表明,考虑了系数相关性的这些模型去噪效果较好。

Sendur等人在考虑系数的相关性的同时,还利用了双树复小波变换(Dual-tree Complex Wavelet Transform,DT-CWT)的近似平移不变特性和多方向选择特性;从而提高了角度分辨率,可以更好地处理图像边缘纹理等细节信息。基于DT-CWT的优点,DT-CWT也广泛应用到了图像去噪领域,其中杨国梁等人提出的基于贝叶斯估计的双树复小波图像降噪,将双树复小波变换和贝叶斯估计确定阈值相结合,更好地对图像特征进行了跟踪、定位和保留,并取得了很好的去噪效果。

发明内容

为了克服现有的图像去噪方法的去噪性能较差、自适应较差的不足,本发明提供一种去噪性能优良、具有良好的自适应性的双树复小波域的邻域自适应贝叶斯收缩图像去噪方法。

本发明采取的技术方案是:

一种双树复小波域的邻域自适应贝叶斯收缩图像去噪方法,所述图像去噪方法包括以下步骤:

1)对含噪图像进行双树复小波变换,将其进行三级分解后得到K+1个子带系数;

2)用鲁棒中值器估计出噪声方差:用Yij表示第一级分解的子带中第i行第j列系数的实部,用表示图像的噪声方差,该噪声方差采用鲁棒中值估计器估计为:σ^n=Median(|Yij|)/0.6745---(1)]]>

3)对除低通子带系数之外的其他K个子带系数进行如下处理:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210224036.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top