[发明专利]图像质量评估的盲去模糊方法有效

专利信息
申请号: 201210218310.1 申请日: 2012-06-28
公开(公告)号: CN102750679A 公开(公告)日: 2012-10-24
发明(设计)人: 王爽;焦李成;李源;梁冲;季佩媛;李婷婷;郑喆坤 申请(专利权)人: 西安电子科技大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;朱红星
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 质量 评估 模糊 方法
【说明书】:

技术领域

发明属于图像处理技术领域,具体地说是一种对模糊图像进行盲去模糊方法,该方法可用于对各种未知模糊类型的模糊图像进行去模糊。

背景技术

实际生活中,由于观测系统本身物理特性的限制,同时受观测环境的影响,观测图像和真实图像之间不可避免地存在着偏差和失真,称之为图像退化或图像降质。图像去模糊就是图像退化或降质的逆过程。图像去模糊是图像处理领域的一类常见问题,因其重要性和艰巨性而成为一个研究热点。图像去模糊分为两大类型:图像非盲去模糊和图像盲去模糊。图像非盲去模糊是指已知退化过程中的模糊核,再求清晰图像,这类问题已经研究的非常纯熟,现有很多技术可以得到非常清晰的解。图像盲去模糊是指在不知道模糊核的情况下,从退化图像中估计出原始图像。由于可以利用的经验知识比较少,图像盲去模糊非常困难,但是此类问题更符合实际需求,因而图像盲去模糊问题成为现代研究的热点。

图像盲去模糊方法分为参数法和正则法两类。参数法,即模型参数法,就是将模糊核和真实图像用数学模型加以描述,模型的参数需要进行辨识。在参数法中,典型的有先验模糊辨识法和ARMA参数估计法。它们需要知道模糊核的具体形式,所以局限性很大。此外,它们还有计算量太大,解不唯一,以及估计算法往往不稳定、效果差等缺点。正则法是根据图像的先验信息来约束求解过程。正则法中比较经典的有是模拟退火方法,它假设图像与模糊核是正性的,然后通过求解代价方程得到最终解。这种算法虽然不需要已知模糊核的具体形式,但是不够稳定,输出图像容易有杂痕,而且很容易得到局部最优解而不是全局最优解。

上述传统的盲去模糊方法不但效果差而且在实际应用中不能很好的实现。目前,国际上提出了许多改进的方法。Dilip Krishman等人运用模糊核和图像的先验特性,用迭代求解的方式进行去模糊,该方法能良好的恢复图像的边缘信息。但是,恢复的图像容易产生失真。Rob Fergus等人提出基于图像梯度分布的贝叶斯方法,这种方法分析了图像的梯度分布,用曲线对梯度分布进行拟合,先求出模糊核,再用经典的L-R迭代法进行图像的非盲去模糊。这虽然在一定程度上能恢复图像信息,但是因为采用了古老的迭代法进行求解,得到的去模糊图像视觉效果不好,图像也不稳定。Ayers和Dainty提出的基于单帧的迭代盲目去卷积方法。它用先验知识来对图像进行非负性限制,在每一次迭代中可以通过简单的逆滤波得到图像和模糊核的估计。这种方法在一定程度上能够达到去模糊的目的,但是在频域与时域的迭代中很容易产生图像划痕,影响了视觉效果。

发明内容

本发明的目的在于针对上述已有技术的不足,提出基于图像质量评估的盲去模糊方法,以去除在迭代中产生的图像划痕,改善视觉效果。

实现本发明目的的技术思路为:利用图像的先验信息,在频域与时域迭代的过程中求解图像与模糊核,并对图像进行质量评估,根据每次迭代中图像质量评估的数值,输出最优图像,再对最优图像进行后处理即可得到无划痕的去模糊图像。其步骤包括:

(1)输入模糊图像z;

(2)设置迭代标记k=1,迭代最大值kmax=45,图像质量评估值Sk的初始值S0设置为1000,评估图像yk的初始值y0设置为模糊图像z,模糊核vk的初始值v0设置为高斯脉冲函数;

(3)按照下列公式更新评估图像yk

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210218310.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top