[发明专利]锂离子电池类石墨烯MoS2/石墨烯复合电极的制备方法有效
申请号: | 201210187857.X | 申请日: | 2012-06-08 |
公开(公告)号: | CN102683647A | 公开(公告)日: | 2012-09-19 |
发明(设计)人: | 陈卫祥;黄国创;王臻;马琳 | 申请(专利权)人: | 浙江大学 |
主分类号: | H01M4/1393 | 分类号: | H01M4/1393 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 韩介梅 |
地址: | 310027 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 锂离子电池 石墨 mos sub 复合 电极 制备 方法 | ||
技术领域
本发明涉及复合纳米材料的制备方法,尤其涉及锂离子电池类石墨烯MoS2/石墨烯复合电极制备方法,属于无机复合纳米材料、新能源材料制备领域。
背景技术
锂离子电池具有比能量高、无记忆效应、环境友好等优异性能, 已经广泛应用于移动电话和笔记本电脑等便携式移动电器。作为动力电池,锂离子电池在电动自行车和电动汽车上也具有广泛的应用前景。目前锂离子电池的负极材料主要采用石墨材料(如:石墨微球、天然改性石墨和人造石墨等),这些石墨材料具有较好的循环稳定性能,但是其容量较低,石墨的理论容量为372 mAh/g。新一代锂离子电池对电极材料的容量和循环稳定性能提出了更高的要求,不仅要求负极材料具有高的电化学容量,而且具有良好的循环稳定性能和高倍率特性。
MoS2具有类似石墨的典型层状结构。MoS2层状结构为三明治的层状结构,其层内是很强的共价键(S-Mo-S),层间则是较弱的范德华力,层与层之间容易剥离。MoS2较弱的层间作用力和较大的层间距允许通过插入反应在其层间引入外来的原子或分子。这样的特性使MoS2材料可以作为插入反应的主体材料。因此,MoS2是一种有发展前途的电化学储锂和电化学储镁的电极材料(G. X. Wang, S. Bewlay, J. Yao, et al., Electrochem. Solid State, 2004,7:A321;X. L. Li , Y. D. Li, J. Phys. Chem. B, 2004,108:13893.)。1995年Miki等研究了无定形MoS2的电化学嵌锂和脱锂性能(Y. Miki, D. Nakazato, H. Ikuta, et al., J. Power Sources,1995, 54: 508),结果发现他们所合成的无定形MoS2 粉体中,性能最好的样品的电化学嵌脱锂的可逆容量只有200 mAh/g, 在循环100次以后,其可逆容量下降到100 mAh/g, 为其初始容量的一半。因此,其可逆容量和循环稳定性能还需要进一步改进。合成纳米结构的电活性材料是改善其电化学性能的一个有效途径。Li等[J. Alloys Compounds,2009,471(1-2) 442-447]用离子液体协助的水热方法合成了花状形貌的MoS2,其电化学贮锂可逆容量达到850 mAh/g,但是其充放电循环稳定性和高倍率充放电特性依然欠佳,有待进一步改善和增强。
最近,单层或少层数的二维纳米材料的研究引起了人们的极大兴趣。石墨烯是目前研究的最多单层二维纳米材料,石墨烯以其独特的二维纳米片结构具有众多独特的物理、化学和力学等性能,具有重要的科学研究意义和广泛的应用前景。石墨烯具有极高的比表面积、高的导电和导热性能、高的电荷迁移率,优异的力学性能。石墨烯作为微纳米电子器件、新能源电池的电极材料、固体润滑剂和新型的催化剂载体的具有广泛的应用前景。石墨烯纳米片及其复合材料的合成及其作为锂离子电池负极材料的研究得到了广泛关注。理论计算表明石墨烯纳米片的两侧可以贮锂,其理论容量为744 mAh/g,是石墨理论容量(372 mAh/g)的两倍。但是也有一些文献报道石墨烯及其复合材料电极的循环性能还有待改善,如:石墨烯与金属氧化物(SnO2, Sn 或Si纳米粒子复合材料在循环30-50次以后,其容量有大约只有原来的70%左右,这是由于SnO2, Sn 或Si纳米粒子与石墨烯在微观形貌和晶体结构上存在较大的差异。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210187857.X/2.html,转载请声明来源钻瓜专利网。
- 上一篇:冲击套筒和用于设计和形成冲击套筒的方法
- 下一篇:离心机水泵压力测试夹具
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法