[发明专利]一种基于加速度传感器的运动识别方法有效

专利信息
申请号: 201210156396.X 申请日: 2012-05-18
公开(公告)号: CN102707806A 公开(公告)日: 2012-10-03
发明(设计)人: 梁晓辉;刘杰;郭承禹;王剑 申请(专利权)人: 北京航空航天大学
主分类号: G06F3/01 分类号: G06F3/01
代理公司: 北京科迪生专利代理有限责任公司 11251 代理人: 杨学明;顾炜
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 加速度 传感器 运动 识别 方法
【说明书】:

技术领域

发明涉及一种运动识别方法,特别是涉及加速度传感器的运动识别方法,属于人机交互技术领域。

背景技术

早期的运动识别主要是基于视觉方式的,给定一段图像序列或者一个视频片段,识别出人物的运动类型。基于视觉的方法具有交互自然,提取的特征信息丰富等优点,但该方法在实际应用中也有一些局限性,需要克服很多问题。如环境中的光照条件,人物在摄像机前的位置,场地的大小等。传感器具有价格便宜,携带方便,不受场地限制等优点,随着这些设备的发展,运动识别又被带入了一片新的研究领域,补充了传统基于视觉的运动识别方法在实际应用中的不足,促使了运动识别在日常生活中的应用。这一技术已经被用在行为障碍病人的康复状况监视,老年人突发疾病预防监视等应用中。常用的传感器有加速度传感器,陀螺仪,麦克风等,一些内置传感器的设备如Apple iPhone,Nintendo Wiimote等,这些无线设备的发展使得大范围的交互应用成为可能,如智能家庭,混合现实等应用。

对于使用加速度传感器进行运动识别而言,主要问题有三:一为如何快速自动地分割传感器输出的加速度信号,以达到在线的进行运动分割的目的,为后续的在线识别做准备;二为如何建立有效的分类模型,以达到高效准确的对运动进行分类识别的目的;三为如何采用适当的方法,在运动结束之间进行识别,提高交互感。本发明将以这三个问题为基本出发点,对运动识别过程中的关键问题进行分析,解决以上提到的主要技术问题,实现一个高效的在线运动识别系统。

对于加速度信号分割问题,很多研究工作都是将传感器信号手动分割好,作为训练和测试的数据库。这样降低了信号处理的负担,并且数据比较理想化,在此基础上排除了数据的影响,可以对比分析识别算法的性能。但是实际应用中,手动的方法交互感不好,不便于操作和应用,因此我们需要对信号进行在线的分割处理;对于分类模型的选取,现阶段大多数研究与相应的系统采用动态时间卷曲算法(DTW)和隐马尔科夫模型方法(HMM),DTW算法所需的训练数据较少,并且能够动态的更新匹配的模板。但该算法的运算速度会随着待识别的时序数据的长度以及模板的数量的增大而明显的减慢,HMM方法用一个状态表示当前动作,但是很多全身性动作比较复杂,无法仅仅用一个状态充分表示出来,因此需要两个或多个状态变量来表示,本发明采用Fused HMM方法,解决了单独的一个HMM无法对具有相关关系的两个时序序列同时进行建模的问题,对于具有交互过程的全身性动作具有很好的描述能力,并且当一个HMM信息丢失时另一个HMM仍能正常工作,增加了算法的鲁棒性;对于提前进行运动识别问题,当前主要的处理方法是当一个运动完成之后再去调用识别过程,在有些应用中这种延迟感会降低用户体验度。本发明采用了自回归的预测模型,利用已知帧数据,预测出未知的数据,通过对预测得到的数据进行分析,可以在运动结束之前即开始识别的过程,并达到提前识别的效果。

发明内容

本发明的目的:应用了一种连续的信号处理方法,自动的进行端点检测,实现信号的自动在线分割能力;使用Fused隐马尔科夫模型作为识别分类器,解决了传统的隐马尔科夫模型对复杂交互运动识别能力差的问题;运用自回归的预测模型对未知数据进行预测,增强了提前识别的能力,解决了运动完成后再去识别造成的延迟感问题,本发明的主要目标是实现一个交互良好的高效准确的运动识别系统。

本发明为了达到上述目的采用的技术方案为:一种基于加速度传感器的运动识别方法,其步骤如下:

步骤(1)、在线的对加速度信号进行自动分割:在线的对加速度信号进行滤波分割处理,并筛选得到分割点;

步骤(2)、将信号分割后的加速度信号表达的运动信息分成两部分,训练基于Fused隐马尔科夫模型的分类模型,使用隐马尔科夫模型分别对每部分运动信息进行建模,再利用概率混合模型将两个模型进行关联;

步骤(3)、利用一阶自回归模型,通过已知的数据来预测未知的数据;并根据隐状态和观察值之间的关系,将预测关系表达成隐状态和观察值之间的一个概率转移;

步骤(4)、将待识别的运动数据带入到带有预测能力的Fused隐马尔科夫模型中进行估值操作,给出最后的识别结果。

进一步的,所述步骤(1)中在线的对加速度信号进行分割的步骤具体如下:

步骤(A1)、应用递归最小二乘法(RLS)预测滤波器对加速度运动信号进行处理;

步骤(A2)、当预测信号和原始信号明显不同时,说明存在不稳定点,分析得到的不稳定点,筛选得到分割点。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210156396.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top