[发明专利]一种基于机器视觉的室内一般物体识别方法有效

专利信息
申请号: 201210141374.6 申请日: 2012-05-08
公开(公告)号: CN102708380A 公开(公告)日: 2012-10-03
发明(设计)人: 李新德;张晓;金晓彬 申请(专利权)人: 东南大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 夏雪
地址: 210096*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 机器 视觉 室内 一般 物体 识别 方法
【说明书】:

技术领域

发明涉及在真实室内环境中,通过机器视觉对室内一般物体的识别过程,属于模式识别领域。

背景技术

在人类感知外部世界的过程中,眼睛发挥了不可替代的作用,人类获取外部的信息主要是通过视觉这个渠道。人类天生具有通过眼睛高效、实时的从外部获取信息进而做出相应判断处理的能力。人类视觉系统是一个复杂精微的组成单元,尤其是人类大脑视觉皮层,在获取由视觉神经传输过来的信息之后进行精确的处理。看似简单直白的过程其实蕴含极其复杂的信息处理,迄今为止,人类并未完全清楚视觉处理过程的原理,甚至并未设计出可以与三、四岁幼童视觉识别过程相提并论的机器视觉模型。

机器视觉是研究如何使计算机像人类一样可以对图像数据产生智能感知的一门科学,在安全监控、交通管理、智能移动机器人等领域有着广泛的应用。室内一般物体识别,直观的可以理解为,设计一种识别方法,使得机器可以像人类一样,在真实的室内环境中对任意物体的检测识别能力。要求在一定量的训练样本的前提下,计算机可以学习有关指定物体类别的知识,并在观察到从属于旧类别的新物体时,给出识别的结果。

参照人类视觉识别系统的原理,当前对于一般物体的识别过程也遵循类比于人类的判断过程,如图2:先建立一般图像目标物的描述,然后利用机器学习方法学习图像目标类型,再利用学习得到的模型对未知的图像目标进行分类、识别。图像目标描述就是描述图像目标的类型;目标类型学习是将目标描述与先验知识(如人工对目标的标记)进行结合,获得相应的目标模型;分类表示如何将学习的目标模型应用于待分类的图像目标。

在真实的室内环境中,物体的多样性和背景的复杂干扰是我们对一般物体识别过程中面对的最大问题。任何物体目标都有其自身的特点,比如构成部件以及部件之间的相对关系等,但不同于人类可以很好的理解和接受物体图像的高级语义特征,计算机可以理解的只是图像的低层特征,即人类对图像的理解和计算机的理解存在着语义鸿沟,语义鸿沟是一般物体识别过程中所要面对的一个挑战。

G.Csurka,C.Dance,L.Fan,J.Williamowski(G.Csurka,C.Dance,L.Fan,J.Williamowski,et al.Visual Categorization with bags of keypoints[C].ECCV’04workshop on Statistical Learning in Computer Vision,2004,59–74)提出的一般物体识别算法是词袋模型(Bag Of Words,简写BOW),如图1所示。该算法把整幅图像看作一个个“单词”构成的“文本”,对“文本”中的“单词”统计分析,来实现物体的识别。由于其策略简单、对图像内目标位置和形变具有鲁棒性等优点,在过去的几年得到了广泛的关注和显著发展。但是该方法中特征之间是相互独立的,不存在物体部件的空间关系属性,此外,也没能有效处理背景环境的干扰。Leibe和Grauman提出了星座模型和星型模型(Leibe B,Grauman K,2008.Visual object recognition.Tutotial for AAAI2008)。星座模型的学习过程是先对参数进行初始化,接着用期望最大迭代到目标收敛,再最大化局部特征和局部特征之间关系的相似性计算,星座模型要估计很多参数。星型模型的典型代表是隐形形状模型,该模型需要学习局部特征和星型拓扑结构。这些统计模型所涉及的众多参数,计算很复杂,现实适用性很小。

发明内容

发明目的:针对上述现有技术存在的问题和不足,本发明提出一种新的一般物体识别方法,在经典BOW算法的基础上,加入对物体部件空间关系统计信息,利用同类物体外观相似、不同类物体外观相差较大这一信息来进行辅助物体识别。

技术方案:本发明采用的技术方案主要包括如下步骤:

步骤1:建立一类物体的视觉词库,通过K均值聚类限定词库的规模;

步骤2:进行图像前期处理,将一幅图像用词库中的单词表示,用相似阀值近似区分背景和前景。这样可以减少背景的干扰;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210141374.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top