[发明专利]基于字典学习的胃部CT图像感兴趣区域检测系统有效

专利信息
申请号: 201110346515.3 申请日: 2011-11-04
公开(公告)号: CN102436584A 公开(公告)日: 2012-05-02
发明(设计)人: 缑水平;焦李成;赵一帆;费全花;侯彪;周治国;王云利 申请(专利权)人: 西安电子科技大学
主分类号: G06K9/46 分类号: G06K9/46;G06K9/62
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;朱红星
地址: 710071 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 字典 学习 胃部 ct 图像 感兴趣 区域 检测 系统
【说明书】:

技术领域

发明属于图像处理技术领域,特别是涉及医学影像处理,可用于医学影像的感兴趣区域检测及其辅助诊断。

背景技术

近年来医学影像技术发展迅速,使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。计算机辅助诊断(ComputerAided Diagnosis简称为CAD)技术被称为医生的“第二双眼睛”,主要研究如何通过图像处理技术对这些医学影像信息进行有效的处理,辅助医生的诊断甚至进行手术规划,具有重大的社会效益和广泛的应用前景。医学图像处理技术作为计算机辅助诊断的关键不断发展,各学科的交叉已是必然的趋势,但其中还有很多问题亟待解决,特别是随着远程医疗的蓬勃发展,对医学图像处理与分析提出的要求也越来越高,所以进一步研究医学图像处理与分析具有十分重要的意义。

目前的医学影像研究主要为乳腺X线影像,肝部CT影像,由于胃部CT影像包含内容较为复杂,所以对于胃部CT影像的研究仍处于初期阶段。2000年全球新发胃癌病例87.6万,死亡64.6万,死亡率位居第二,其中新发病例35%在我国统计数据表明,胃癌占全部恶性肿瘤死亡的23.2%,在恶性肿瘤死亡率中位居第一位,所以对胃部CT图像的研究具有十分重要的意义。现有胃癌的诊断与治疗手段包括传统根治手段、腹腔镜手术、内镜切除手术等,医生在术前一般需要先对病人的CT影像进行初步的诊断,通过发生癌变的淋巴结数目以及大小等信息判断病人的N分期,然后依据判断结果进行手术。而依据医生的临床经验,淋巴结一般只存在于脂肪组织中,其他脏器如肝脏、胰脏、血管等在检测淋巴结时都属于影响医生判断的冗余信息,因此,研究计算机辅助技术检测胃部CT图像的感兴趣区域具有很大的应用需求。

发明内容

本发明的目的在于针对胃部CT影像所含信息复杂问题,提出一种基于字典学习的胃部CT图像的感兴趣区域检测系统,以去除胃部CT影像中无关的信息。

为实现上述目的,本发明提供基于字典学习的胃部CT图像感兴趣区域检测系统为由计算机软件构成的虚拟系统,包括:

训练图像块生成模块,用于从医院提供的25幅图像中随机选择10幅作为训练图像,并在每幅图像中截取32个感兴趣图像块和36个不感兴趣图像块,其中每个图像块大小为5×5,共得到感兴趣组320个图像块和不感兴趣组360个图像块;

训练图像块特征提取模块,用于分别对得到的两组图像块中的每个图像块提取15维的梯度特征值和25维的灰度特征值,每个图像块对应的得到一个40维的特征向量,用感兴趣图像块组320个图像块得到的320个40维的特征向量组成一个行数为40、列数为320的感兴趣矩阵X1,用不感兴趣图像块组360个图像块得到的360个40维的特征向量组成一个行数为40、列数为360的不感兴趣矩阵X2

字典的生成模块,用于对感兴趣矩阵X1和不感兴趣矩阵X2采用字典学习方法K-SVD分别生成感兴趣字典D1和不感兴趣字典D2

测试图像输入模块,用于输入待检测感兴趣区域的原始图像F;

脂肪组织检测模块,以原始图像F的每个像素点q为中心取5×5的邻域得到像素块Q,对像素块Q提取15维的梯度特征值和25维的灰度特征值,组成一个40维的特征向量v,用感兴趣字典D1和不感兴趣字典D2分别采用匹配追踪算法OMP逼近特征向量v,得到逼近误差e1和e2,如果e1<e2则认为该像素点q为感兴趣像素点,标记类标为1,如果e1≥e2则该像素点q为不感兴趣点,标记类标为0;将原始图像F中类标为0的像素点的灰度值赋值为0,保持原始图像F中类标为1的像素点的灰度值不变,得到脂肪图F1

脂肪组织边缘切除模块,用于切除脂肪图F1中最外层的脂肪组织,即检测F1中影像信息的最外层边缘,并以F1中坐标为(256,256)的像素为中心点O,沿最外层边缘一周向中心点O以30个像素大小为半径缩进,得到感兴趣脂肪图F2

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201110346515.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top