[发明专利]一种水合结构SnO2/IrO2·xH2O氧化物薄膜电极材料及其制备方法有效
申请号: | 201110336786.0 | 申请日: | 2011-10-28 |
公开(公告)号: | CN102509632A | 公开(公告)日: | 2012-06-20 |
发明(设计)人: | 吴允苗 | 申请(专利权)人: | 泉州师范学院 |
主分类号: | H01G9/042 | 分类号: | H01G9/042 |
代理公司: | 泉州市文华专利代理有限公司 35205 | 代理人: | 戴中生 |
地址: | 362000 *** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 水合 结构 sno sub iro xh 氧化物 薄膜 电极 材料 及其 制备 方法 | ||
技术领域
本发明涉及电极材料及其制备方法,具体涉及具有水合结构SnO2/IrO2·xH2O氧化物薄膜电极材料以及制备该水合结构SnO2/IrO2·xH2O氧化物薄膜电极材料的方法。
背景技术
超级电容器具有高比电容、高功率密度、长循环寿命几大优点,在消费电子、动力设施、混合动力汽车、航空航天等领域有着广泛的应用前景。超级电容器的性能主要取决于所采用的电极材料的结构与组成成分。具有水合结构的过渡金属氧化物电极材料被认为是最优秀的超级电容器电极材料之一,受到广泛的关注。在过渡金属氧化物中,以水合氧化钌的电容性能表现最为突出。例如,采用溶胶凝胶法制备的水合氧化钌的比电容可达到720F/g以上。但水合氧化钌存在一个较为严重的缺点:即在强酸介质中,随着循环充放电次数的增加,氧化钌会发生溶解,从而导致电容器的持续使用稳定性不够,一般在经历数千次循环充放电后,电容储存能力衰减10~20%。
氧化铱也具有良好的赝电容特性,尽管略低于水合氧化钌。但是,氧化铱具有超强的耐强酸腐蚀性,其耐蚀性要远高于氧化钌。因此,若用于制备超级电容器电极材料,可保证电容器在经历上万次循环充放电后,电容值不容易衰减。非水合氧化铱的比电容在50F/g左右。通过与其他金属氧化物混合,能提高氧化铱的利用率,根据加入的混合氧化物的种类、加入的比例不同,比电容在50~250F/g之间变化。相比纯氧化铱而言有了不少的进步,但离实际应用还有很大的差距。
发明内容
本发明的目的在于提供一种具有高比电容的水合结构SnO2/IrO2·xH2O氧化物薄膜电极材料及其制备方法。本发明提供的水合结构的SnO2/IrO2·xH2O氧化物薄膜材料的比电容可达561.45F/g,并且表现出优异的循环充放电稳定性,在经历一万次循环充放电后,电极储存电荷的能力几乎没有衰减,这得益于氧化铱的高耐腐蚀性能。另外,制备该氧化物薄膜电极材料的方法简单、可重复性强,适合于工业化生产应用。
为达到上述的目的,本发明采用如下技术方案:
一种水合结构SnO2/IrO2·xH2O氧化物薄膜电极材料,由衬底和SnO2/IrO2·xH2O氧化物薄膜共同组成,所述SnO2/IrO2·xH2O氧化物薄膜沉积于衬底表面,所述氧化物薄膜具有水合结构,氧化物薄膜中Sn∶Ir摩尔比为30~70∶70~30,其中x为0.2~3。
一种水合结构SnO2/IrO2·xH2O氧化物薄膜电极材料的制备方法包括以下步骤:
1)将锡前躯体、铱前躯体溶解到溶剂中,并加入适量双氧水和盐酸,搅拌均匀后制得锡铱离子摩尔比为30~70∶70~30的前躯体溶液,双氧水的添加量按每摩尔金属离子添加60~120ml计量;盐酸的添加量按每升溶液添加20~50ml计量;
2)将前躯体溶液涂覆在衬底表面,然后在红外灯下烘干固化后送入气氛炉中进行热处理,热处理过程持续向炉内通入水蒸气和空气混合气体,热处理温度为405℃-550℃,热处理时间为8~15分钟,出炉后用风扇吹冷,重复进行涂覆、烘干固化、热处理、冷却步骤8-12遍,最后,在405℃-550℃退火,退火过程持续向炉内通入水蒸汽和空气的混合气体,退火30~90分钟,然后随炉冷却,即制得水合结构SnO2/IrO2·xH2O氧化物薄膜电极材料。
所述衬底为具有良好导电性的钛、钛合金、钽、镍、钒中的任意一种。
所述步骤1)中的锡前躯体为氯化亚锡、结晶四氯化锡、烷氧基锡中的至少一种。
所述步骤1)中的铱前躯体为氯铱酸、四氯化铱中的至少一种。
所述步骤1)中的溶剂为乙醇、正丁醇、异丙醇、水,盐酸中的至少一种。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于泉州师范学院,未经泉州师范学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110336786.0/2.html,转载请声明来源钻瓜专利网。
- 碳涂覆的阳极材料
- 一种SnO<sub>2</sub>-Zn<sub>2</sub>SnO<sub>4</sub>复合压敏陶瓷及制备方法
- 一种La<sub>2</sub>O<sub>3</sub>-SnO<sub>2</sub>-Zn<sub>2</sub>SnO<sub>4</sub>压敏-电容双功能陶瓷材料及其制备方法
- 一种La<sub>2</sub>O<sub>3</sub>-SnO<sub>2</sub>-Zn<sub>2</sub>SnO<sub>4</sub>压敏-电容双功能陶瓷材料及其制备方法
- Zn<sub>2</sub>SnO<sub>4</sub>/SnO<sub>2</sub>复合纳米结构、其制备方法及用途
- 一种SnO<sub>2</sub>纳米线阵列的制备方法
- 异质结二氧化锡气敏材料的制备方法及其产品和应用
- 分级结构的SnO2气敏材料及其制备方法
- 一种山茶花状ZnO/SnO-SnO<base:Sub>2
- 低电阻率Ag/SnO2电工触头材料及其制备
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法