[发明专利]一种基于自适应遗传算法的小型无人旋翼机动力学模型辨识方法有效

专利信息
申请号: 201110238756.6 申请日: 2011-08-19
公开(公告)号: CN102298329A 公开(公告)日: 2011-12-28
发明(设计)人: 雷旭升;房建成;李晶晶;白浪;杜玉虎;洪晔;张霄;盛蔚 申请(专利权)人: 北京航空航天大学
主分类号: G05B13/04 分类号: G05B13/04;G06N3/12
代理公司: 北京科迪生专利代理有限责任公司 11251 代理人: 成金玉;顾炜
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 自适应 遗传 算法 小型 无人 旋翼机 动力学 模型 辨识 方法
【说明书】:

技术领域

发明涉及一种基于自适应遗传算法的小型无人旋翼机动力学模型辨识方法,适用于工作于空中无人机器人自主控制领域。

背景技术

小型无人旋翼机具有垂直起降、悬停等特性,可以在市区街道等狭窄空间执行任务,具有广泛的应用前景。随着应用领域的扩张,小型无人旋翼机的智能化程度需求也日益增加,全自主、高智能的小型无人旋翼机成为研究的热点。

作为复杂的多输入多输出控制系统,小型无人旋翼机具有强耦合、非线性、控制难度高等特性,动力学建模复杂。高精度模型是进一步高精度控制的基础。目前主要通过风洞试验,CFD(Computational Fluid Dynamic)数值模拟和系统辨识方法来确定小型无人旋翼机动力学模型。风洞试验是飞行器动力学研究的传统方法,结果可靠性比较高,但该法具有试验成本高、周期长等局限性。CFD数值模拟技术是20世纪60年代起随着计算机技术迅速崛起的学科。近年来,各种CFD通用软件陆续出现,已在航空航天、船舶、车辆、水利领域得到应用。与传统的风洞试验对比,CFD数值模拟技术具有成本低、数据全面等优点。但CFD在处理复杂边界条件时的计算精度、计算时间仍难满足实际工程应用的需要。系统辨识是利用系统运行或试验过程中得到的系统输入输出数据建立系统数学模型。根据系统运行或试验测试得到的数据,结合必要的数据处理、数学计算,建立系统模型,并估算出模型中的具体参数。与传统的风洞试验和CFD数值模拟方法对比,系统辨识方法具有数据获取方便、控制模型和参数可靠的优点。

传统的参数辨识方法主要有最小二乘法辨识、子空间辨识、预测误差辨识。其中,最小二乘法作为一种经典的参数辨识方法,收敛速度快,计算量小,但它易受测量数据段噪声影响,且容易出现数据饱和,对于复杂的飞行器动力学系统效果不佳;子空间辨识方法对于多输入多输出系统而言,由于子空间假设了噪声与系统的输入无关,但实际系统中的噪声量很难满足与输入量完全不相关,所以模型很难得到满意的结果;预测误差方法采用是一种在一个稳定解附近迭代求解的方法,缺点是需要预先给定一个比较接近真值的解。

发明内容

本发明的技术解决问题是:针对小型无人旋翼机现有动力学模型辨识方法的不足,提出一种基于自适应遗传算法的小型无人旋翼机动力学模型辨识方法,解决了小型无人旋翼机动力学模型辨识问题,从而可以实现小型无人旋翼机高精度控制。

本发明的技术解决方案为:一种基于自适应遗传算法的小型无人旋翼机动力学模型辨识方法,采集小型无人旋翼机执行标准动作时候的状态数据和控制数据并进行数据优化,通过平衡点线性化方法构建小型无人旋翼机动力学模型,并利用自适应遗传算法对模型参数进行辨识,通过一步预测方法对模型参数有效性进行评估判断,具体步骤如下:

(1)采集小型无人旋翼机数据

飞控手操控小型无人旋翼机进入悬停状态后,按照预定规划执行悬停和直线前飞的标准激励动作,通过数据采集系统采集小型无人旋翼机俯仰角和角速度、滚转角和角速度、偏航角和角速度、水平面速度和高度方向的速度,纵向周期变距、横向周期变距、航向舵控制量、主浆总距控制量四个控制舵量,并通过平滑滤波进行数据优化来消除采集数据中存在的野值。

(2)构建小型无人旋翼机动力学模型及自适应辨识

针对小型无人旋翼机自主起降阶段的工作特性,通过平衡点线性化方法构建小型无人旋翼机动力学模型,其中模型状态量为小型无人旋翼机的北向速度u,东向速度v,地向速度w,,俯仰角φ,滚转角θ,俯仰角速率p,滚转角速率q和偏航角速度r,模型的输入量为小型无人旋翼机纵向周期变距B1s、横向周期变距A1s、航向舵控制量AT、主浆总距控制量AM

基于构建的小型无人旋翼机动力学模型,将待辨识参数构建遗传算法个体,以优化后的部分采集数据作为训练样本,通过自适应遗传算法进行寻优求解,获得优化个体;

自适应遗传算法,主要由自适应交叉、自适应变异、自适应选择和适应度函数构成,自适应交叉定义如下:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201110238756.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top