[发明专利]基于Treelet变换和特征融合的遥感图像变化检测方法有效
| 申请号: | 201110191629.5 | 申请日: | 2011-07-08 |
| 公开(公告)号: | CN102289807A | 公开(公告)日: | 2011-12-21 |
| 发明(设计)人: | 王桂婷;焦李成;万义萍;公茂果;钟桦;张小华;田小林;侯彪;王爽 | 申请(专利权)人: | 西安电子科技大学 |
| 主分类号: | G06T7/00 | 分类号: | G06T7/00 |
| 代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 田文英;王品华 |
| 地址: | 710071*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 treelet 变换 特征 融合 遥感 图像 变化 检测 方法 | ||
技术领域
本发明属于图像处理技术领域,更进一步涉及一种基于Treelet变换和特征融合的遥感图像变化检测方法。该方法可应用于环境变化中的湖泊水位动态监测、农作物生长状态的动态监测、军事侦察等领域,能够快速的检测出两时相遥感图像的变化信息。
背景技术
变化检测是通过分析同一地区不同时刻的多幅遥感图像,检测出该地区地物随时间发生变化的信息。随着遥感技术和信息技术的发展,多时相遥感图像变化检测已经成为当前遥感图像分析研究的一个重要方向。
在多时相遥感图像变化检测方法的研究中,常见的一种检测方法是先比较后分类法,即首先构造一幅差异图像,然后利用阈值或分类法确定变化类和非变化类。先比较后分类法的优点在于简单易行,没有先分类后比较法所存在的分类误差累计问题,但该方法存在的明显不足是,对图像的预处理如几何校正、辐射校正、图像滤波等要求较高,并且对阈值选择方法和分类方法要求更加严格,影响了遥感图像变化检测的精度。
西安电子科技大学在其专利申请“基于Treelets的遥感图像变化检测方法”(专利申请号:201110001584.0,公开号:CN102063720A)中提出了一种Treelets滤波和K-means聚类相结合的遥感图像变化检测方法。该方法虽然能够减小辐射校正和光照不均对检测结果的影响,但仍存在的不足是,Treelets交叉滤波会导致检测结果中存在较多漏检信息,不能较好的保持变化区域边缘信息,降低了遥感图像的变化检测精度。此外,由于该方法使用Treelet变换对两幅图像中的每个像素点都进行滤波,使得该方法的时间复杂度较高,不具有实时性。
为了更加准确、全面的获取多时相遥感图像的变化信息,许多学者将图像融合技术应用到多时相遥感图像变化检测中,使多时相遥感图像间的互补信息得到更好的结合,达到更好的检测结果和检测精度。
2010年Celik和Ma在文献“Unsupervised Change Detection for Satellite Images Using Dual-Tree Complex Wavelet Transform”(IEEE Transactions on Geoscience and Remote Sensing,2010,48(3):1199-1210.)中提出了一种基于双树复小波变换和尺度融合的变化检测方法。该方法首先对传统的双线性插值方法进行了改进,提出了一种加权双线性插值方法,并对两时相遥感图像分别进行加权双线性插值和双树复小波分解,然后通过尺度内融合得到同一分解层的变化检测结果,最后通过加权双线性插值和不同尺度间融合得到最终的变化检测结果。该方法虽然能够较好的保持变化区域的边缘信息,存在较少漏检信息,但仍存在的不足是,该方法通过逻辑与运算进行融合,为了获得较为全面的变化信息,导致检测结果中存在较多虚警信息,降低了遥感图像变化检测精度,难以较好兼顾变化检测结果中的漏检信息和虚警信息。
发明内容
本发明针对上述现有技术存在的不足,提出了一种基于Treelet变换和特征融合的遥感图像变化检测方法。本发明既可以较好的保持变化区域的边缘信息,又可以较好的兼顾变化检测结果中的漏检信息和虚警信息,具有较好的实时性和较高的检测精度。
本发明实现上述目的的思路是:在对读入的数据进行中值滤波后,先对构造的差异图像进行统计均值阈值分类和自适应空间信息填充,再对滤波后的图像利用Treelet变换、K-means聚类和数学形态学后处理生成模糊结果图,最后通过特征与运算进行融合。
本发明的步骤包括如下:
(1)读入同一地区不同时刻获取的两幅遥感图像。
(2)中值滤波
2a)确定正方形窗口:选取步骤(1)中的一幅遥感图像,以该图像中的某一像素点为中心,选取一个大小为N1×N1的正方形窗口,其中,N1为奇数;
2b)确定滤波值:将正方形窗口中全部像素点的灰度值按照由大到小的顺序排列,组成一个灰度序列,选取位于灰度序列中间位置的灰度值作为滤波值;
2c)滤波:用滤波值替代步骤2a)中像素点的灰度值;
2d)重复步骤2a)至步骤2c),直至处理完图像中的全部像素点;
2e)按照步骤2a)至步骤2d),对步骤(1)中的另外一幅遥感图像进行处理,得到滤波后的两幅图像。
(3)构造差异图像
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110191629.5/2.html,转载请声明来源钻瓜专利网。





