[发明专利]一种数控机床智能故障诊断方法有效
| 申请号: | 201110151854.6 | 申请日: | 2011-06-08 |
| 公开(公告)号: | CN102819239A | 公开(公告)日: | 2012-12-12 |
| 发明(设计)人: | 陈明;于颖;李营垒;陈从鹏;李知铠 | 申请(专利权)人: | 同济大学 |
| 主分类号: | G05B19/406 | 分类号: | G05B19/406 |
| 代理公司: | 上海智信专利代理有限公司 31002 | 代理人: | 吴林松 |
| 地址: | 200092 *** | 国省代码: | 上海;31 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 数控机床 智能 故障诊断 方法 | ||
技术领域
本发明属于故障诊断领域,涉及数控机床特征信号的分析,故障知识的匹配。
背景技术
智能故障诊断技术自从上世纪八十年提出来之后,国内外关于故障诊断技术一直在不断发展完善,不断有新思路,新想法被提出来。近年来国际上故障诊断技术发展的非常迅速,常用的故障诊断方法有最近邻法,灰度法,故障树法,模糊推理法,以及运用人工神经网络建立故障诊断模型等方法。全球各地的学者和工程师一直在不断完善故障诊断方法。复杂程度高的数控机床能够创造出巨大的经济效益,但一旦发生故障,一方面停机会带来经济损失,另一方面,有可能引起生产事故。这就要求智能故障诊断方法诊断速度快、准确率高。但对于有多棵故障树符合匹配条件时,如何对故障树进行排序,以减少诊断需要时间,目前还未检索到这类方法的发明专利及相关文献。
总体来说,故障树分析方法仍然是故障诊断中最有效的方法之一。其诊断结果准确率高,这有助于在实际应用中准确定位故障原因,迅速解决故障。但是缺点在于故障树本身不能囊括故障诊断需要的所有信息,同时传统的定性分析在实际应用中会出现组合爆炸问题。将传统的故障树分析方法进行一定的改进与创新并与其它智能诊断方法相结合,会是一个很好的选择。
经对现有技术的文献检索和专利的检索发现常见的故障诊断方法有以下几种:
方法1:美国专利申请号US 6,785,636 B1的专利设计了一个诊断系统,该诊断系统使用贝叶斯网络的方法对监测到的故障进行推理,给出各种可能的原因的概率。其贝叶斯网络的各个概率是通过手工生成和自动计算得出。该系统允许同时估计多个故障的原因的可能性。该方法将故障现象与各种可能性的直接原因和间接原因进行了关联。将每种原因导致故障现象的边缘概率与先验概率都进行了设定。在故障诊断时,根据现象来找相应的原因。这种方法在诊断某几个特定的故障的时候是可取的,但是该诊断方法要求所有的故障知识都有一个可靠的先验概率与边缘概率才能进行比较可靠的诊断,同时诊断结果并不能明确排除某一个故障原因,只是将原有的多个故障原因依据概率从大到小排列,这种方法在一定程度上是可取。但是对于用于生产的数控机床在生产过程中创造的经济价值非常大,每一次故障都会造成巨大的经济损失,因此就要求数控机床的故障诊断系统拥有较高的可靠性;另一方面,本方法对于故障知识的要求过高,并不是所有的故障原因都能被找到一个恰当的边缘概率。因此该方法在实际应用的效用有待商榷。
方法2:美国专利申请号US 6,789,793 B2,该专利是一种针对打印机的基于贝叶斯网络的故障诊断方法,这种诊断方法的工作原理如图一。通过历史搜集的有关打印机使用过程中可能发生的各种事件,将所有事件放入贝叶斯网络中,并确定各事件的条件概率与边缘概率。根据打印机出故障时的故障状态,计算可能是故障原因的各事件的后验概率。该方法充分利用了贝叶斯网络在条件不足的情况下进行不确定性诊断的优势,具有一定可借鉴之处。该方法2使用了贝叶斯网络方法,贝叶斯网络充分发挥了贝叶斯方法在不确定性诊断方面的优势。但该方法所对应的待诊断设备有其特殊性。首先,打印机的故障种类较少,引起故障的原因也与数控机床不在同一个数量级。由于待确定的故障原因较少,在计算其故障原因的后验概率时并不是特别困难,各个先验概率和边缘概率的确定也可以根据历史数据一一计算。由于事件不多,在创建贝叶斯网络的时候,经过有限次的拟合,可以得到一个比较可信的贝叶斯网络。但是对于大型数控机床来说,其事件数目比打印机高出两个数量级,因此为其创建一个可信度较高的贝叶斯网络是一件非常困难的时期,因此该专利所记载的方法并不能适用于大型数控机床的故障诊断。
方法3:路杨等人在《基于灰色理论的故障案例检索算法》中采用基于案例的推理(Case Based Reasoning,CBR)技术进行故障诊断,对传统案例匹配的诊断方法进行改进,一定程度上克服了案例匹配算法确定相似度系数时过于主观的确点。方法3并不能很好的用于数控机床故障诊断,数控机床的大部分状态量都可以被数控系统明确的反映出,利用案例匹配诊断的时候,相似度经常是0或者1。不能发挥案例匹配方法基于相似度诊断的优势。同时案例匹配方法在确定相似度的时候具有很大的主观随意性,因此诊断准确程度经常是与主观的判断相关,方法3中虽然进行了一定程度上的改进仍然不能完全克服这个缺点。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110151854.6/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种负载驱动电路及负载驱动方法
- 下一篇:一种采用安装界面支架结构的路灯





