[发明专利]一种基于行驻波正交叠加声场的电驱动热声制冷机无效
申请号: | 201110025007.5 | 申请日: | 2011-01-24 |
公开(公告)号: | CN102095278A | 公开(公告)日: | 2011-06-15 |
发明(设计)人: | 康慧芳;郑宏飞 | 申请(专利权)人: | 北京理工大学 |
主分类号: | F25B23/00 | 分类号: | F25B23/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 驻波 正交 叠加 声场 驱动 制冷机 | ||
技术领域
本发明涉及一种制冷机装置,特别涉及一种利用行驻波正交叠加声场特性的热声制冷机装置。
背景技术
热声制冷机是利用热声效应,利用声波将热量从低温端泵送到高温端。根据工作声场特性不同,热声热机主要分为驻波型、行波型及行驻波混合型三种。由于驻波声场中速度波和压力波相位差为驻波声场理论上没有声功输出;另一方面,在驻波热声热机中热声转化基于气体同固体的不可逆热接触,气体进行的是不可逆热力学循环,所以热声热机效率低。于是,1979年Ceperley首次提出了行波型热声热机的概念。行波声场中速度波和压力波相位差为热声转化基于气体同固体的可逆热接触。然而,Ceperley研制的行波型热声发动机并没有实现声功放大的功能。随后,日本的Yazaki实验验证了在行波通道中可以实现自维持震荡,并驱动热声制冷机实现了行波热声制冷,但其效率很低。Yazaki等人在研究中意识到了单环路型行波热声热机由于板叠处声阻抗低,工作气体振动速度较大,造成了严重的粘性损失,限制了行波热声热机效率的提高。
1999年,Backhaus和Swift设计制作了一台新型行波热声发动机,将行波热声发动机的效率提高到30%。该发动机主要由行波通道和谐振管组成,通过合理设计环路管段的结构尺寸使回热器处于行波声场,同时在行波回路中引入谐振管从而提高了回热器处的声阻抗。在此基础上,使用其行波原理设计了热声制冷机,实现了高效制冷。
为了实现可逆热声转换,众多研究者一直追求高阻抗的行波相位。2009年康慧芳对热声系统内声场分布特性展开了研究,指出在类驻波声场中即可实现高阻抗行波相位区,然而,过少的行波成分会使得行波相位区很窄,高效率区很窄,不能满足热声核心元件段的长度要求。在一维声场中,可以通过增加行波成分的方法增加行波区长度,然而随着行波成分的增加,虽然行波相位区长度增加,但是行波相位区当地声阻抗减小,热声转换效率降低。行波区长度和阻抗的相互制约关系,限制了热声制冷系统的发展。
发明内容
本发明的目的在于提供一种基于行驻波正交叠加声场的热声制冷机,根据行波和驻波声场的叠加特性,改变传统的驻波型热声热机和行波型热声热机的设计理念,采用正交型结构设计实现行波声场和驻波声场正交叠加,解除单通道热声系统中行波区长度和阻抗的制约关系,使得沿行波通道方向串联的各级热声转换单元均工作于高阻抗行波相位区,提高级联型热声制冷机的转换效率,增加声功流密度。
本发明的技术方案如下:一种基于行驻波正交叠加声场的热声制冷机,包括:第一声波调理器(1)、第二声波调理器(7)、行波通道(2)、一个或多个驻波管(3),所述驻波管(3)与所述行波通道(2)垂直相交,在交汇处放置由室温端冷却器(4)、热声回热器(5)和冷头(6)依次相连组成的热声制冷单元(A),第一声波调理器(1)和第二声波调理器(7)分别设置在行波通道(2)的两端,通过第一声波调理器(1)、第二声波调理器(7)在行波通道(2)内调制出以行波成分为主的声场;所述驻波管(3)提供的驻波成分与行波通道(2)提供的行波成分在热声制冷单元(A)处正交叠加,在叠加处有效利用驻波成分的高阻抗特性和行波成分的行波相位特性,使得所述热声制冷单元(A)工作于高阻抗行波相位区。
本发明的基于行驻波正交叠加声场的热声制冷机装置与现有技术相比,其关键技术在于:
根据行波和驻波声场的叠加特性,改变传统的驻波型热声热机和行波型热声热机的设计理念,采用驻波管(3)与行波通道(2)垂直相交,在交汇处放置由室温端冷却器(4)、热声回热器(5)和冷头(6)依次相连组成的热声制冷单元(A),正交型结构设计在交叉点实现行波声场和驻波声场正交叠加,解除了单通道热声系统的行波区长度和阻抗的制约关系。
本发明的基于行驻波正交叠加声场的热声制冷机装置具备如下优点:
本发明的基于行驻波正交叠加声场的热声制冷机装置中,驻波管(3)提供的驻波成分与行波通道(2)提供的行波成分在热声制冷单元(A)处正交叠加,热声制冷单元(A)位于驻波管(3)中压力波幅附近(即速度节点附近),有效利用驻波成分的高阻抗特性和行波成分的行波相位特性,使得各级热声制冷单元(A)均工作于高阻抗行波相位区,实现高效热声转换。
附图说明
图1为本发明实施例1结构示意图;
图2为本发明实施例2结构示意图;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110025007.5/2.html,转载请声明来源钻瓜专利网。