[发明专利]多分辨率多区域变分水平集图像分割方法无效

专利信息
申请号: 201010590113.3 申请日: 2010-12-16
公开(公告)号: CN102044077A 公开(公告)日: 2011-05-04
发明(设计)人: 方江雄;杨杰;屠恩美;贾振红;庞韶宁 申请(专利权)人: 上海交通大学
主分类号: G06T7/00 分类号: G06T7/00
代理公司: 上海交达专利事务所 31201 代理人: 王锡麟;王桂忠
地址: 200240 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 分辨率 区域 水平 图像 分割 方法
【说明书】:

技术领域

本发明涉及的是一种图像处理技术领域图像分割的方法,具体是一种多分辨率多区域变分水平集(Multiresolution and Multiregion Level Set,MR-MRSL)图像分割方法。

技术背景

图像分割是图像特征提取和分类的重要环节,图像分割的目的就是将图像中的灰度同质区域分离开,并通过各个同质区域的边界来表达。近年来,水平集分割方法凭借其自由拓扑性及多信息共融性,被广泛应用于计算机视觉,例如图像分割、运动跟踪、三维重建。基于C-V模型的水平集图像分割方法具有几个优点:1、所涉及的图像函数的定义域是整个图像,具有全局特性。因此,该模型图像分割方法具有全局优化的特点,仅用一条初始闭合轮廓线就可以进行图像的分割;2、初始曲线的位置无关性,轮廓线经过数次循环可以正确地分割出目标和背景;3、与图像中的边缘信息的无关性,即使图像中的边缘呈模糊或离散状,仍然可以获得理想的分割效果。但是,对具有噪声的遥感图像、医学图像以及自然图像而言,该方法具有几个缺陷:1、该C-V模型对同质区域的划分时仅考虑灰度,对多通道图像处理无能为力;2、该模型每次更新后,需要重新初始化符号距离函数,而高分辨率数据量丰富的图像计算量非常大;3、该模型对于带较厚空洞和三合点的目标,不能稳定地检测内部区域。

经对现有技术文献的检索发现,王爽等提出基于水平集和分水蛉相结合的图像轮廓检测方法(专利号:CN101567084)以及基于邻域概率密度函数特征的水平集图像分割方法(专利号:CN101571951);曹宗杰提出了基于概率论模型的水平集方法(专利号:CN101221239);杨杰、周娟等提出的基于空间矩的水平集图像分割方法(专利号:CN101493942A)。这些方法均是基于两区域水平集方法进行改进来提高分割结果,但是针对多区域的图像分割非常困难,主要原因是多个闭合曲线分割会导致分割的图像区域产生重叠现象,而且对于数据量大的在循环次数多时非常耗时。

发明内容

本发明的目的在于克服现有技术中的不足,提供一种多分辨率多区域变分水平集图像分割方法。本发明基于变分水平集C-V模型,用N-1个水平集函数Φ={φ1,φ2,…,φn-1}将图像分割成N(N>1)个区域,每个水平集函数表达一个区域,从而避兔分割区域的重叠和漏分,通过多分辨率技术执行分割图像的演化曲线来解决初始化水平集能量函数陷入局部能量最小值,降低了噪声的干扰、减小了搜索的空间。

本发明是通过以下的技术方案实现的:

本发明包括如下步骤:

首先,设置分辨率级数以及分割区域的数目,将原始图像按照空间分辨率在每一维进行连续下采样生成分辨率为2L的图像,其中2L为低分辨率级数;

然后,为当前分辨率图像建立能量模型,利用变分水平集最小化能量模型,进行曲线演化得到N-1个零水平集演化曲线方程;

进一步以2i(i=2,…L)为系数采用双线性插值方法上采样演化曲线,得到的该演化曲线作为下一分辨率构建初始化演化曲线,然后构建该分辨率图像总能量模型,利用变分水平集最小化能量模型,采用多分辨率水平集方法,进行曲线演化得到当前分辨率下N-1个零水平集演化曲线方程;

最后,演化过程不断重复,直至达到原始分辨率图像,得到分割结果。

所述的将原始图像按照空间分辨率在每一维进行连续下采样生成分辨率为2L的图像:先设置分辨率的级数L,生成分辨率级数为L低分辨率的图像,作为初始分辨率的图像。

图像的级数不能太高(本发明采用的级数L=3,4),否则会导致图像信息的丢失,影响分割结果。

所述的变分水平集,其多区域分割方法,包括分割区域表示和图像能量模型,在分割区域表示中,Chan和Vese提出了多相水平集分割方法,用N个水平集函数将图像分割成为2N个区域,会产生交叉区域。

本发明采用N-1个水平集函数函数Φ={φ1,φ2,…,φn-1}将图像分割成N(N>1)个区域,每个水平集函数表达一个区域,从而避免造成重叠和漏分。

所述的变分水平集,其函数曲线围成的区域可表示为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201010590113.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top