[发明专利]航空发动机转子系统工况振动信号特征信息提取方法无效
| 申请号: | 201010298385.6 | 申请日: | 2010-09-30 |
| 公开(公告)号: | CN101968379A | 公开(公告)日: | 2011-02-09 |
| 发明(设计)人: | 刘晓波;沈亮霓;王志华;孙康 | 申请(专利权)人: | 南昌航空大学 |
| 主分类号: | G01H11/06 | 分类号: | G01H11/06 |
| 代理公司: | 南昌洪达专利事务所 36111 | 代理人: | 刘凌峰 |
| 地址: | 330000 江西省*** | 国省代码: | 江西;36 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 航空发动机 转子 系统 工况 振动 信号 特征 信息 提取 方法 | ||
技术领域
本发明涉及一种信号特征信息提取方法,尤其涉及一种航空发动机转子系统工况振动信号特征信息提取方法。
背景技术
航空发动机是飞机的心脏,是航空机械设备中故障率最高、调整最复杂、维护工作量最大的系统,其工作状态的好坏直接影响到飞机的安全可靠与运行。一旦发动机在运行中出现了故障,就可能导致飞机无法正常飞行,危及人身安全,造成重大的社会、经济损失。
据统计,航空发动机的故障发生率约占整个飞机故障的30%。飞机因机械原因发生的重大飞行事故中40%左右是由于发动机故障导致的。发动机由于自身特点不同于一般机械,即使非常轻微的一些机械缺陷或损伤都会引起转子系统的振动,包括从几乎小得微不足道的振动到大得足以导致发动机破坏的振动,由于航空发动机转子系统的复杂性,多种故障表现为相同的振动,同一故障表现为不同的振动,往往导致漏报和误报,严重影响了航空发动机转子系统故障诊断的可靠性。为了提高航空发动机转子系统故障诊断水平,需要发展实用、高效的特征信息提取方法。
目前,航空发动机振动故障诊断和信号特征提取的方法很多。例如,侯胜利、李应红等在《基于主元核相似度免疫机制的故障诊断方法及应用》一文中基于主元核理论和免疫系统机制,提出了基于主元核相似度免疫机制的故障诊断方法。文振华、左洪福在《基于粗糙集-集成神经网络的航空发动机磨损故障诊断方法》一文中将粗糙集理论和神经网络相结合并应用到航空发动机磨损故障诊断中,依据属性的重要性和决策表的相容性,采用粗糙集理论对征兆信息进行属性约简,获取征兆的主要特征。徐启华、师军在《基于支持向量机的航空发动机故障诊断》一文中提出一种基于支持向量机的航空发动机故障诊断方法,应用该方法成功地对发动机气路部件的几种典型故障进行了正确诊断。王威、侯胜利在《一种基于人工免疫理论的性能监控与故障诊断方法》一文中针对航空发动机故障样本获取比较困难等问题,提出了一种基于人工免疫理论的航空发动机性能监控与故障诊断方法。蔡开龙,谢寿生在《航空发动机的模糊故障诊断方法研究》一文中提出了一种基于T-S模糊模型的故障诊断方法,将基于T-S模糊模型的故障诊断方法应用于航空发动机。
这些方法都对航空发动机振动信号特征信息的提取做出了贡献,但诊断手段单一,不能高效、准确、快捷的提取航空发动机转子系统的工况特征信息,全面反映航空发动机转子系统的运行状态。
发明内容
本发明的目的在于提供一种航空发动机转子系统工况振动信号特征信息提取方法,利用传感器测取振动位移信号,采用小波分析与聚类分析相结合的方法,从大量振动信号中挖掘隐含的特征信息,实现工况特征的准确、高效提取。
本发明是这样来实现的,其特征是方法为:
1)特征向量获取:通过电涡流位移传感器,按确定的时间间隔或采样频率测取确定数量个航空发动机转子系统在某个采样时段的振动位移信号,对振动位移信号进行小波变换,并获取该信号沿尺度(频率)轴上的能量模分布情况,然后将其按尺度顺序排列成向量,作为特征向量;将确定数量个特征向量组成初始样本集Q,求取样本集Q特征向量作为待诊断样本;
2)聚类分析:将Q按距离准则逐步聚类,类别由多到少(聚集法),直到满足合适的分类要求为止,通过比较待诊断样本与各个初始样本之间的距离,最终获得转子系统工况振动信号特征信息。
所述的特征向量获取的具体步骤如下:
(1)通过电涡流位移传感器,按确定的时间间隔或采样频率测取确定数量个航空发动机转子系统在某个采样时段的振动位移信号;
(2)选择小波基函数,并用该基函数对信号进行连续小波变换;
(3)确定尺度参数的取值范围;
(4)求信号的连续小波变换的系数的模,由式
求得连续小波变换的系数,其中为的共轭函数,再通过式得到其尺度-能量谱,然后用式转化成小波变换系数的模:
(5)按照尺度因子a由小到大将信号连续小波变换的能量模顺序排列,即得到与转子运行状态相对应的特征向量,本向量为基于尺度-能量模的特征向量;
(6)重复步骤(1)~(4),得到n个表征转子运行状态的特征向量,将n个特征向量组成初始样本集,求取该样本集特征向量为待诊断样本。
所述的聚类分析的具体步骤为:
(1)初始化:令n个特征向量作为初始样本自成一类,即建立n个子集计算各类之间的距离,可得到一个n×n维的距离矩阵D(a),其中右上角标号(0)表示聚类开始运算前的状态,设定迭代计算器为b=0:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南昌航空大学,未经南昌航空大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201010298385.6/2.html,转载请声明来源钻瓜专利网。
- 上一篇:井盖防盗锁
- 下一篇:倒插式液相声表面波检测装置及其阵列





