[发明专利]低阻抗应变率传感器无效
申请号: | 200810119209.4 | 申请日: | 2008-08-29 |
公开(公告)号: | CN101358828A | 公开(公告)日: | 2009-02-04 |
发明(设计)人: | 姚军;李晓钢;王晓慧;金有刚;叶建华;熊泽涛 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G01B7/16 | 分类号: | G01B7/16 |
代理公司: | 北京慧泉知识产权代理有限公司 | 代理人: | 王顺荣;唐爱华 |
地址: | 100191北京市海*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 阻抗 应变 传感器 | ||
1.一种低阻抗应变率传感器,是由压电陶瓷、线性运算放大器及反馈电阻组成;其特征在于:该压电陶瓷直接连接到线性运算放大器的负输入端,线性运算放大器的正输入端接地,并且在线性运算放大器的负输入端和输出端之间连接一个反馈电阻;
其中,该压电陶瓷被粘贴于被测结构的表面,当被测结构受力发生形变时,压电陶瓷也会发生相应地形变,该压电陶瓷的应变率通过压电效应被转化为电流,再经过线性运算放大器和反馈电阻将电流转化为输出电压通过测量输出电压就能获取被测结构的应变率;
如何构造低阻抗应变率传感器,如下所述:
设压电陶瓷的二极间通过电阻R构成回路,由第四类压电方程
其中,为压电片在夹持条件下的介电常数;Ep和μp分别为压电片的弹性模量和泊桑比;
得到,压电陶瓷内场强为:
输出电压为:
其中,δp为压电陶瓷厚度,单位面积压电陶瓷提供的电流为:
从中得到关于电位移D3(t)的一阶微分方程是:
在频域内的解为:
其中,一个变量在时域t,频域ω或拉氏域s内将采用同一符号;
将公式(29)代回(27),得到在频域内:
若R=0,则:
i(jω)=-jωep(S1(jω)+S2(jω)) (31)
方程(30)或(31)构成了压电陶瓷用作结构应变率传感器的基础;
设把压电陶瓷“理想”地粘贴到一个结构上——所谓“理想粘贴”是指压电陶瓷粘贴面处的应变与结构的当地应变相同;又设压电陶瓷很薄,忽略其应变沿厚度的变化,这样,压电陶瓷平面域内的应变S1和S2分别与结构的当地应变εx和εy一致
S1(x,y,t)=εx(x,y,t)S2(x,y,t)=εy(x,y,t) (32)
压电陶瓷直接与线性运算放大器的负输入端相连接,在线性运算放大器的负输入端和输出端之间连接一个反馈电阻;
因为负输入端为“虚地”,电位近似为零,因此方程(31)近似成立,运放输出电压为
其中Rf为运放反馈电阻,Ωs为压电陶瓷遍及的结构区域,它表明:压电陶瓷--运放组合作为结构的“应变率传感器”,输出电压正比于结构的当地正应变率之和的积分,当压电陶瓷面积足够小时,将趋于直接正比于结构的当地点正应变率之和;
对于一维应力结构(T2(x,t)=σy(x,t)=0),相应于方程(33)的应变率传感器输出为
其中bp为压电陶瓷宽度;T2、σy分别为从力学和压电角度结构y轴方向所受的应力;
注意其中的压电常数ep和hp由方程(21-24)确定;
方程(21-24)的表达式如下:
ep=Epdp (21)
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200810119209.4/1.html,转载请声明来源钻瓜专利网。