[发明专利]一种基于图像特征分析的浮选回收率预测方法有效
| 申请号: | 200810031806.1 | 申请日: | 2008-07-18 |
| 公开(公告)号: | CN101334366A | 公开(公告)日: | 2008-12-31 |
| 发明(设计)人: | 桂卫华;阳春华;周开军;唐朝晖;许灿辉;程翠兰;刘金平 | 申请(专利权)人: | 中南大学 |
| 主分类号: | G01N21/84 | 分类号: | G01N21/84;G01N33/00 |
| 代理公司: | 中南大学专利中心 | 代理人: | 胡燕瑜 |
| 地址: | 410083*** | 国省代码: | 湖南;43 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 图像 特征 分析 浮选 回收率 预测 方法 | ||
[技术领域]
本发明涉及选矿过程的泡沫图像特征分析及矿物回收率预测方法,特别是轻金属浮选的泡沫特征分析及回收率预测。
[背景技术]
浮选是矿物加工中应用最广泛的一种选矿方法,它涉及到极其复杂的物理化学过程。矿物浮选目的是提高原矿品位,满足还原冶炼的要求。回收率作为浮选过程的一个关键指标,直接影响到精矿的质量和产量。然而,浮选工艺流程长,影响因素多且耦合严重,无法实现回收率的在线检测。一直以来选厂通过离线化验分析回收率,滞后于浮选过程4个小时,不能及时指导生产操作。
浮选泡沫包含大量与回收率相关的视觉信息。常用方法是通过提取泡沫颜色、尺寸等特征,采用神经网络,模糊模型等方法建立浮选视觉数据模型,但图像特征样本数量较少时,这些基于经验风险最小化准则的方法普遍存在泛化性差和过拟合等问题,不能准确检测回收率,使得浮选过程难以处于最优运行状态。
[发明内容]
本发明的目的在于解决回收率无法在线检测,避免常规方法不能准确预测的问题,提供一种基于泡沫图像特征分析的矿物回收率预测方法,为矿物浮选过程的优化操作提供参考信息。本发明采用摄像机、光源、图像采集卡、计算机及其附属部件构成系统硬件平台,获取浮选槽泡沫图像,并提取泡沫特征,采用LSSVM模型预测回收率,系统软件采用C++编程语言开发。本发明主要内容如下:
首先通过一系列硬件设备,如:计算机PC、照明系统、CCD彩色摄像机和图像采集卡构建泡沫图像获取平台。经图像采集卡转换为数字图像送往计算机,再由计算机对采集到的泡沫图像进行有关特征分析计算。采用相对红色分量提取颜色特征,结合聚类与分水岭方法分割泡沫图像并提取尺寸特征,利用像素分析方法提取承载量特征,采用图像对的相关性分析方法提取泡沫速度、破碎率等动态特征,并对泡沫特征与回收率进行相关性分析。采用LSSVM建立预测模型,以图像特征作为模型输入,通过交叉验证实现模型参数优化。工业应用表明,通过对浮选泡沫图像的分析处理,提取的泡沫特征参数能够反映回收率,LSSVM模型能准确地预测矿物回收率。
通过构建的泡沫图像设备平台有效地获取到泡沫图像,对泡沫图像进行特征提取,采用动态堆栈的野值数据剔除方法,具有比常用方法更准确便捷的效果,以泡沫图像特征作为LSSVM预测模型输入,有效地解决了回收率无法在线检测,及常规方法不能准确预测的问题。
[附图说明]
图1浮选泡沫图像分析系统硬件结构示意图;
图2浮选回收率预测结果。
下面结合附图和具体实施方式对本发明作进一步的详细说明。
[具体实施方式]
泡沫图像分析系统硬件结构如图1所示,主要由摄像机1、光源2、光纤3、图像采集卡4、计算机5构成。图中摄像机1用来拍摄泡沫层6,且垂直安装于浮选槽7正上方,与溢流槽8距离为200cm。
摄像机1的分辨率设置为1024×768,快门设置为323uS,工作距离为110cm,镜头焦距为55mm,视场为16cm×12cm,由12V直流电源供电,测量精度为6.4-6.8pixels/mm。
光源2采用200W高频荧光灯,色温为4500K,供电电源为220V@50HZ,光源2靠近摄像机1,水平距离为10cm。
彩色CCD摄像机1获取泡沫层图像,将视频信号数字化并转换成光信号,通过光纤3传输到图像采集卡4,转化为格式为RGB-24bits的数字图像信号然后读入计算机5,图像处理程序通过图像采集卡4的底层驱动接口获取泡沫图像。图像处理程序提取泡沫图像特征参数,如气泡颜色、尺寸、速度、破碎率及承载量特征,作为系统预测模型输入并预测回收率。
图像特征提取具体实现如下:
气泡颜色,通过整幅泡沫图像计算气泡颜色,提取图像的相对红色分量,分别计算出红色分量的均值和灰度图像的均值,然后计算图像的相对红色分量信息。为了避免全反射点和阴影的影响,去掉最暗和最亮的像素值。
气泡尺寸,采用形态学开运算和面积重构操作对图像进行预处理;用Ostu算法进行二值转化分割,同时采用新的重构方法求二值图像的距离变换图;基于h顶开重构的改进变换为分水岭变换提供标识点从而完成泡沫图像的分割。利用分水岭算法标记气泡连通区域的骨架图像,计算每个连通区域的像素数目,可得到泡沫图像的尺寸。
气泡速度,通过获取到两个连续的移动目标,第一帧中目标的位置为x0、y0,其灰度值为V。在第二帧图像中,在x0、y0的位置跟踪8个方向直到目标的灰度值搜索到。对于在浮选过程中这种大量移动的泡沫,泡沫局部形变而导致以不同的速率移动,采用图像对的相关性分析检测整个泡沫图像的平均速率。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200810031806.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种压铸铝制散热片的密封机构
- 下一篇:一种主治胃病的中药
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序





