[发明专利]基于多模式增敏成像融合的早期肿瘤定位跟踪方法无效
申请号: | 200710040755.4 | 申请日: | 2007-05-17 |
公开(公告)号: | CN101053531A | 公开(公告)日: | 2007-10-17 |
发明(设计)人: | 秦斌杰;罗肖 | 申请(专利权)人: | 上海交通大学 |
主分类号: | A61B19/00 | 分类号: | A61B19/00;A61B5/055;A61B8/13;G06T5/00 |
代理公司: | 上海交达专利事务所 | 代理人: | 王锡麟;王桂忠 |
地址: | 200240*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 模式 成像 融合 早期 肿瘤 定位 跟踪 方法 | ||
1.一种基于多模式增敏成像融合的早期肿瘤定位跟踪方法,其特征在于,包括以下步骤:
第一步,获得术前增敏图像:通过术前成像增敏剂与肿瘤的靶向结合,利用核磁共振医学成像手段,获得对目标病灶区域及周围组织结构进行成像增敏的术前核磁共振医学图像,选定该图像为配准的浮动图像;
第二步,获得术中增敏图像:术中增敏图像是采用超声成像仪获得的,通过术中超声成像增敏剂与肿瘤的靶向结合,配合术中可控频率超声场对超声成像增敏剂的激发作用,获得能有效增敏目标病灶成像效果的术中三维超声图像,选定该图像为参考图像,用于实时跟踪术中目标病灶的改变;
第三步,在图像导向治疗时,利用全局刚性变换和肿瘤目标病灶四周局部非刚性变换组合作为形变配准的几何变换模型,对术前和术中增敏图像进行基于联合显著区域的形变配准,而后对术前和术中图像进行融合,重建出肿瘤病灶区域的三维可视化模型,对术中肿瘤目标病灶进行定位;
第四步,利用上述基于联合显著区域的形变配准方法,结合术中超声成像的运动分析手段,完成对术前核磁共振图像的运动形变补偿,实时更新术中超声成像和术前图像的配准关系,实时显示三维超声成像和术前医学图像在肿瘤病灶及周围组织结构四周的成像融合效果,进而自动完成肿瘤目标病灶的靶向跟踪。
2.根据权利要求1所述的基于多模式增敏成像融合的早期肿瘤定位跟踪方法,其特征是,所述第三步中,利用全局刚体变换和多层B样条自由形变模型组合构成形变的几何变换模型,然后利用术前和术中多模式成像灰度信息提取联合显著区域,再基于联合显著区域的灰度相似性测度,进行非刚性图像配准。
3.根据权利要求2所述的基于多模式增敏成像融合的早期肿瘤定位跟踪方法,其特征是,所述的图像配准,具体实现如下:
(a)粗配准:利用图像体素为整体特征,采用传统的图像配准方法,对两幅图像进行粗配准;
(b)获取多分辨率显著测度图:对获取的两种图像数据进行多分辨率金字塔构建,并选用一种测度度量显著性程度,得到待配准图像各自的显著测度图;
(c)对当前分辨率尺度,利用相似性分析度量术前和术中多分辨率显著测度图中公共显著区域的位置和程度,得到待配准图像之间的联合显著图;
(d)利用(c)得到的联合显著图,融合到联合灰度直方图的统计中,增强公共显著区域在联合直方图统计中的权重,再定义一个基于联合灰度直方图统计计算的灰度相似性测度,得到联合显著图下的最优几何匹配参数;
(e)利用联合显著图对两幅图像进行配准;
(f)配准后两种模式的图像在同一坐标系下将两幅图像的肿瘤病灶区域融合表达成三维的图像模型。
4.根据权利要求3所述的基于多模式增敏成像融合的早期肿瘤定位跟踪方法,其特征是,所述联合显著图给出了两幅图像间的公共显著区域,公共显著区域即为术前和术中超声成像增敏后的肿瘤目标病灶区域,如果该位置点对应图像的公共显著区域,就被设定为目标感兴趣区域,接下来作为重点配准区域。
5.根据权利要求3或4所述的基于多模式增敏成像融合的早期肿瘤定位跟踪方法,其特征是,所述联合显著图,其值域被归一化到[0,1],即归一化联合显著值,如果归一化联合显著值接近于1,表示待配准图像在该点具有相似的显著特征分布,则认定该点是属于公共显著区域,这些公共显著区域继续参与进一步的配准;如果归一化联合显著值接近于0,则表示在该点两幅图像没有相对应的显著特征分布,此点是异常信号,不属于公共显著区域,被排除参与下一步的配准过程。
6.根据权利要求5所述的基于多模式增敏成像融合的早期肿瘤定位跟踪方法,其特征是,在进行配准时,设定一阈值,将待配准图像各自的显著测度值低于阈值的点在联合显著图中直接赋为0。
7.根据权利要求1所述的基于多模式增敏成像融合的早期肿瘤定位跟踪方法,其特征是,所述的将联合显著图融合到联合灰度直方图的统计中,具体融合方法为:使用归一化联合显著值确定图像上的每对体素对联合灰度直方图的贡献权重,即在得到了浮动图像F与参考图像R的灰度对(f,r)后,用归一化联合显著值计入直方图频数h(f,r)中;如果其归一化联合显著权值很小,这些被判为异常信号或显著性很小的点就被自动地排除在联合灰度直方图的计算,进而也自适应的排除在配准过程之外。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200710040755.4/1.html,转载请声明来源钻瓜专利网。